首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For stand-alone sensor systems apart from defined laboratory circumstances sensors are required, which show a high stability against perturbing environmental influences like the relative humidity (r.h.). We present a portable sensor system, which is capable to quantify tetrachloroethene (TCE) in humid air. The system works highly reproducible and shows only negligible cross-sensitivity towards relative humidity. This allows a single calibration valid from 0 to 80% r.h.. Therefore, referencing with an extra sensor for humidity is not necessary. Binary mixtures of TCE and freone R113 were quantified for 0 and 40% r.h. with a root mean square error of prediction of approximately 3% with respect to the maximum concentration of TCE and R113. The sensitive elements used in the experiments consisted of thin polymer films on glass substrates. The measurements were performed with the optical measurement technique RIfS (Reflectometric Interference Spectroscopy).  相似文献   

2.
A fiber‐optic sensor for relative‐humidity (RH) monitoring in environmental samples is described based on the adiabatic photoreaction that produces an intramolecular charge‐transfer excited state, which is the basis of the sensor response. The sensitive membranes are obtained immobilizing a highly fluorescent dye, 4‐[2‐(pyrazin‐2‐yl)‐1,3‐oxazol‐5‐yl]benzenamine (pzoxba; formerly called appzox), in hydroxypropylcellulose (HPC). The composition of the sensing films was optimized to a final ratio pzoxba/HPC of 1.8⋅10−5 mol g−1 with a 100‐μm membrane thickness. The optode response spans from 1.68 to 100% RH, with a detection limit of 0.56% (Table 2). Typical response times (t90) to 0 – 100% relative humidity are 1 – 2 min, the relative standard deviation for repeated measurements being 0.77 – 1.8%. The optode is insensitive to typical organic vapor interferents of commercial capacitive sensors (see Table 3) as well as to molecular oxygen, an important quencher of other luminescence‐based optical sensors. The proposed optode was successfully applied and validated for continuous monitoring of the relative humidity level in environmental samples.  相似文献   

3.
Dacres H  Narayanaswamy R 《Talanta》2006,69(3):631-636
A highly sensitive optical humidity probe based on reflectance measurements has been developed using Nafion®-crystal violet (CV) films. This sensor can be used to calibrate relative humidity (RH) in the range 0-0.25% with a detection limit (blank signal + 3σb, where σb = the standard deviation (S.D.) of the blank signal) of 0.018% RH (∼4.37 ppm) and exhibited low hysteresis. The sensor films were fully reversible in dry nitrogen and reversal times were shown to be dependent on exposure time and % RH. The response to 1% RH was highly reproducible (S.D. = 1.67%, number of samples (n) = 5). Hydrogen chloride gas did not interfere with the response of the sensor to RH but did reduce sensor reversal times. This sensor displayed sufficient sensitivity that it could be used to detect ppm levels of moisture in process gases such as nitrogen and HCl.  相似文献   

4.
Guan YX  Xu ZR  Dai J  Fang ZL 《Talanta》2006,68(4):1384-1389
The performance of a micropump operating on evaporation and capillary effects, developed for microfluidic (lab-on-a-chip) systems, was studied employing it as the fluid drive in a microfluidic flow injection (FI) system, with chemiluminescence (CL) detection. The micropump featured simple structure, small dimensions, low fabrication cost and stable and adjustable flow-rates during long working periods. Using a micropump with 6.6 cm2 evaporation area, with the ambient temperature and relative humidity fluctuating within 2 h in the ranges 20-21 °C and 30-32%, respectively, an average flow-rate of 3.02 μL/min was obtained, with a precision better than 1.2% R.S.D. (n = 61). When applied to the microchip FI-CL system using the luminol/hexacyanoferrate/H2O2 reaction, a precision of 1.4% R.S.D. (n = 11) was obtained for luminol at a sampling frequency of 30 h−1.  相似文献   

5.
The syndiotactic polystyrene (sPS) δ form was crystallized from mixtures with different compositions of p‐chlorotoluene–chlorobenzene (p‐CT–CB) and p‐chlorotoluene–1,1,2‐trichloroethane (p‐CT–TCE). The presence of the δ form and TTGG helical conformation was confirmed by Fourier transform infrared and wide‐angle X‐ray diffraction (WAXD) analyses. In sPS/p‐CT–CB and sPS/p‐CT–TCE δ‐form membranes, the relative absorbance (RA) of the p‐chlorotoluene (p‐CT) solvent peak was very high even at very low concentrations of p‐CT in comparison with the RA of higher concentrations of chlorobenzene (CB) or 1,1,2‐trichloroethane (TCE) in the mixtures. However, the RAs of both CB and TCE solvent peaks decreased with decreasing concentrations of CB and TCE in the mixtures. A negligible decrease in the RA of the TTGG helical content was observed with a decreasing concentration of CB or TCE. The WAXD results showed that the 2θ peak positions of the [010] and [ 10] planes of the sPS/p‐CT–CB and sPS/p‐CT–TCE δ‐form membranes appeared in the same position and were almost equal to those of the sPS–p‐CT δ‐form membrane. The mesophases of the sPS–p‐CT [p‐CT (A‐M)] and sPS–TCE [TCE (A‐M)] membranes were used for the sorption studies with different concentrations of various solvents. The sorption amount of aromatic solvents by both p‐CT (A‐M) and TCE (A‐M) mesophase membranes was higher than that of aliphatic solvents, regardless of the size, shape, and nature of the molecular cavity. The 2θ peak of the [010] plane of the sPS membranes slowly approached the original δ‐form value when the sPS mesophase membranes were immersed in various solvents of different concentrations for 48 h. The shifting of the 2θ peak of the [010] plane to the original δ form depended on the nature and concentration of the immersion solvents. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2380–2387, 2005  相似文献   

6.
A flow-through optosensor has been prepared for the sensitive and selective determination of pyridoxine (vitamin B6) in aqueous solutions. The sensor was developed in conjunction with a monochannel flow-injection analysis system with fluorimetric detection using Sephadex SP-C25 resin as an active sorbent substrate. This method of determination is carried out without any derivatization. The wavelengths of excitation and emission were 295 and 385 nm, respectively. When a HCl (10–3 mol L–1) / NaCl (3 × 10–2 mol L–1) solution is used as carrier solution, the sensor responds linearly in the measuring range of 5–200, 10–400 and 50–1800 ng mL–1 with detection limits of 0.33, 0.67, and 5.70 ng mL–1 for 2000, 1000 and 200 μL of sample volume, respectively. The relative standard deviation for ten independent determinations is less than 0.75% for 0.2 and 1.0 mL of sample volumes used, and 1.31% for 2.0 mL of sample volume used. The method was satisfactorily applied to the determination of vitamin B6 in pharmaceutical preparations. Received: 4 June 1998 / Revised: 16 July 1998 / Accepted: 6 August 1998  相似文献   

7.
A sol-gel-based optical sensor for the measurement of relative humidity has been developed. It is based on the changes in fluorescence intensity and/or lifetime of the ruthenium complex, ruthenium(II)diphenylphenanthroline-dipyridophenazinehexafluorophosphate. Sensitivity to relative humidity has been demonstrated over the range 0-100% relative humidity. This sensor has been developed for application in the field of indoor air-quality monitoring and displays a limit of detection of 0.35% relative humidity and a resolution of 1.13% over the concentration range of interest (0-50% relative humidity). The effects of varying process parameters on the sensor performance were studied along with the effects of cross-sensitivity to molecular oxygen.  相似文献   

8.
A dynamic dilution system was created to evaluate the performance and the reliability of ozone precursor volatile organic compound (VOC) sampling (TO-Can canisters) and analysis (thermal desorption/gas chromatography/flame ionisation detection) techniques used by the Laboratoire Interrégional de Chimie du Grand Est (LIC). Different atmospheres of VOCs were generated at concentrations between 0.8 and 25 ppb, with temperatures of 0, 10, 20 and 30 °C, and with relative humidities of 0, 30, 50, 70 and 90%. These conditions are generally representative of those commonly observed in ambient air in the eastern France. This dynamic dilution allows the simulation of a wide range of scenarios (concentrations, temperatures and relative humidities). After assessing the capacity and performance of the system, it was applied in order to evaluate the recoveries and stabilities of VOCs from canisters used for the collection and analysis of two mixtures of VOCs. The first mixture contained six alkanes (ethane, propane, butane, pentane, hexane and heptane), and the second contained five alkenes (ethene, propene, butene, 1-pentene and 1-hexene), five aromatics (benzene, toluene, ethylbenzene, m-xylene and o-xylene), acetylene, and 1,3-butadiene. No significant losses of alkanes from the canisters were observed after 21 days of storage, and good recoveries of alkanes from the canisters (>80%) were obtained regardless of the concentration, the temperature and the relative humidity. However, losses of certain aromatics were noted at low relative humidity.  相似文献   

9.
Summary The objective of this study was to investigate the reaction behavior of the photocatalytic oxidation of gaseous trichloroethylene (TCE) using titanium dioxide at room temperature. The experiments were carried out under various humidity levels and oxygen contents of carrier gas in an annular photoreactor. Experimental results indicated that the factors affecting the photocatalysis of TCE by UV/TiO2 process are carrier gases and humidity. It was found that increasing the relative humidity in inlet gas flow under low humidity could improve the decomposition of trichloroethylene and the mineralization of organic intermediates at an irradiation UV light intensity of 2.82 W m-2 by UV/TiO2 process. The photocatalytic kinetics of gaseous trichloroethylene can be described by the Langmuir-Hinshelwood rate equation.  相似文献   

10.
Solutions of tetracyanoethylene (TCE) in pyridine and its homologs (piperidine and triethylamine) and also a solution of the complex of 2,2-dipyridyl with TCE in acetone were investigated. The EPR spectra of these systems show hyperfine structure of nine components with splitting constants characteristic of TCE radical anions. This indicates complete electron transfer from the nitrogen atom in the amine to the TCE molecule. In isolated cases, there was a more complex structure in the EPR spectra, and this was interpreted as the result of formation of associates between the TCE radical anions and the amine molecules. The existence of such associates was confirmed by considerable difference in the proton relaxation times T1 and T2 in TCE solutions in pyridine, -picoline, and 2,6-lutidine. A formation mechanism and proposed structure are given for associates in these systems.T. Ya. Lavrenyuk and V. M. Ogenko took part in the experimental work.The author thanks Academician A. I. Brodskii of the Academy of Sciences of the Ukrainian SSR for discussing the results.  相似文献   

11.
The photo-induced decarbonylation of CpCr(NO)(CO)2 (1a) in MeCN solution in the presence of R2E2 (E = S, Se; R = Me, Ph) leads to the formation of chalcogenolato-bridged binuclear complexes Cp2Cr2(NO)2(-ER)2 [E = S; R = Me (2a), Ph (3a); E = Se, R = Me (4a), Ph (5a)] while reactions between CpM(NO)(CO)2 [M = Mo (1b), W (1c)] and Ph2E2 (E = S, Se) result in mononuclear complexes CpM(NO)(EPh)2 [M = Mo; E = S (9b), Se (10b); M = W, E = S (11c), Se (12c)]. The corresponding reactions of (1b) with Me2E2 (E = S, Se) yielded both mono and binuclear complexes: CpMo(NO)(SeMe)2 (8b), Cp2Mo2(NO)2(-EMe)2 [E = S (6b), Se (7b)]. The new complexes have been characterized by i.r., 1H-, 13C-n.m.r. spectra and by electron-impact mass spectrometry.  相似文献   

12.
The reduction of -cyanoacylurethanes in an aqueous medium in the presence of hydrochlorides of aromatic amines and Raney nickel has given -arylaminoacryloyl-and -alkyl--arylaminoacryloylurethanes which have been converted by heating with 10 % aqueous caustic alkalis into 1-aryl-and 5-alkyl-1-aryluracils.For Communication X, see [1].Translated from Khimiya Geterotsiklicheskikh Soedinenii, Vol. 6, No. 8, pp. 1088–1091, August, 1970.  相似文献   

13.
An optochemical ozone sensor is described that has been manufactured by immobilisation of novel soluble indigo derivatives in permeable transparent polymeric films of polydimethylsiloxane–polycarbonate copolymer. From a number of investigated indigo derivatives, 4,4,7,7-tetraalkoxyindigo 9 has been selected for optimal sensitivity and specificity of ozone detection. A linear calibration for ozone can be obtained in the range between 0.01 and 0.5 ppm. The limit of quantitation is 0.03 ppm, and the accuracy exceeds 8%. It takes about 134 s to measure the relatively low occupational exposure concentration of 0.1 ppm. A reduction of the sensor response time could be achieved through application of double-sided coated sensors instead of single-sided variants. The stability of the sensors and the effect of external parameters like relative humidity (RH), temperature and gas flow on the sensor response have been investigated. The sensor response is affected by varying the gas flow or temperature; however, humidity in the range between 0 and 90% RH does not affect sensor response. The indigo derivative 9 remained stable inside the polymeric film and no chemical reaction, crystallisation or leaching occurred during 10 months of observation. Proper choice of indicator dye and polymeric material and successful application of kinetic evaluation method for the exposure experiments determine the desired features of the sensor.  相似文献   

14.
Copolymers of phenylacetylene (PA) and p-nitrophenylacetylene (pNPA) with various monomers ratios were prepared and characterized. The solubility of copolymers is dependent on the number of PA units in the chain. They show a good degree of stereoregularity and the MW s are in the 103–105 a.m.u. range, depending on the monomers and catalyst molar ratios. The soluble samples exhibit film-forming properties and the film-surface morphology may be varied by using different solvents. The copolymers give good electrical response to relative humidity variations. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 93–102, 1998  相似文献   

15.
Chitosan (chitosan acetic acid salt) and whey (65% protein) films were coated with a nitrocellulose lacquer or laminated with polyethylene to enhance their water resistance and gas barrier properties in humid environments. The barrier properties were measured by the Cobb60 test and water‐vapor (100% relative humidity) transmission and oxygen (90% relative humidity) permeability tests. Mechanical properties were obtained with tensile tests. Packaging properties were studied with crease and folding tests. The Cobb60 test revealed that the coated films were resistant to liquid water, at least for a short exposure time, if the coating thickness was at least 10–17 μm. Water‐vapor transmission rates comparable to those of polyethylene‐laminated films were obtained for coated chitosan at a coating thickness of 5–7 μm. The coated films possessed low oxygen permeability despite the high humidity. Coated films dried for 3 weeks showed oxygen permeabilities at 90% relative humidity that were similar to values for dry ethylene‐co‐vinyl alcohol at 0% relative humidity. The lacquer partly penetrated the whey films, and this led to excellent adhesion but poor lacquer toughness. The lacquer coating on chitosan was tougher, and it was possible to fold these films 90° without the coating fracturing if the coating thickness was small. The coated whey films were readily creasable. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 985–992, 2001  相似文献   

16.
Candle soot (CS) is a desirable carbon nanomaterial for sensors owing to its highly porous nanostructure and large specific surface area. CS is advantageous in its low-cost and facile preparation compared to graphene and carbon nanotubes, but its pristine nanostructure is susceptible to collapse, hampering its application in electronic devices. This article reports conformal coating of nanoscale crosslinked hydrophilic polymer on CS film using initiated chemical vapor deposition, which well preserved the CS nanostructure and obtained nanoporous CS@polymer composites. Tuning coating thickness enabled composites with different morphologies and specific surface areas. Surprisingly, the humidity sensor made from composite with the lowest filling degree, thus largest specific surface area, showed relatively low sensitivity, which is likely due to its discontinuous structure, thus insufficient conductive channels. Composite sensor with optimum filling degree shows excellent sensing response of more than 103 with the linearity of R2 = 0.9400 within a broad relative humidity range from 11% to 96%. The composite sensor also exhibits outstanding sensing performance compared to literature with low hysteresis (3.00%), a satisfactory response time (28.69 s), and a fast recovery time (0.19 s). The composite sensor is fairly stable and durable even after 24 h soaking in water. Furthermore, embedding a humidity sensor into a face mask realizes real-time monitoring of human breath and cough, suggesting promising applications in respiratory monitoring.  相似文献   

17.
Gas barrier properties of alkylsulfonylmethyl-substituted poly(oxyalkylene)s are discussed. Oxygen permeability coefficients of three methylsulfonylmethyl-substituted poly(oxyalkylene)s, poly[oxy(methylsulfonylmethyl)ethylene] (MSE), poly[oxy(methylsulfonylmethyl)ethylene-co-oxyethylene] (MSEE), and poly[oxy-2,2-bis (methylsulfonylmethyl)trimethylene oxide] (MST) were measured. MSEE, which has the most flexible backbone of the three polymers, had an oxygen permeability coefficient at 30°C of 0.0036 × 10−13 cm3(STP)·cm/cm2·s·Pa higher than that of MSE, 0.0014 × 10−13 cm3(STP)·cm/cm2·s·Pa, because the former polymer's Tg was near room temperature. MST with two polar groups per repeat unit and the highest Tg showed the highest oxygen permeability, 0.013 × 10−13 cm3(STP) · cm/cm2·s·Pa, among the three polymers, probably because steric hindrance between the side chains made the chain packing inefficient. As the side chain length of poly[oxy(alkylsulfonylmethyl)ethylene] increased, Tg and density decreased and the oxygen permeability coefficients increased. The oxygen permeability coefficient of MSE at high humidity (84% relative humidity) was seven times higher than when it was dry because absorbed water lowered its Tg. At 100% relative humidity MSE equilibrated to a Tg of 15°C after 2 weeks. A 50/50 blend of MSE/MST had oxygen barrier properties better than the individual polymers (O2 permeability coefficient is 0.0007 × 10−13 cm3(STP)·cm/cm2 ·s·Pa), lower than most commercial high barrier polymers. At 100% relative humidity, it equilibrated to a Tg of 42°C, well above room temperature. These are polymer systems with high gas barrier properties under both dry and wet conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 75–83, 1998  相似文献   

18.
采用简单的溶剂热法制备金属有机框架化合物MIL-125(Ti)和NH_2-MIL-125(Ti)材料,并通过X射线衍射仪、扫描电子显微镜、傅氏转换红外线光谱分析仪和比表面积测试仪对所得样品进行表征。将2种材料修饰构建为石英晶体微天平传感器,测试其在11%~97%RH相对湿度范围内的湿度感测性能。实验结果表明,基于MIL-125(Ti)和NH_2-MIL-125(Ti)构建的传感器对湿度具有灵敏度高、重复性好、响应/恢复快等特点。相对于没有氨基修饰的MIL-125(Ti),NH_2-MIL-125(Ti)材料修饰的传感器对湿度表现出更高的响应性能。在环境湿度约52%时,NH_2-MIL-125(Ti)传感器对11%RH湿度响应值比MIL-125(Ti)湿度传感器的大57 Hz,说明氨基功能化对MIL-125(Ti)的湿敏性能有显著的增强作用。此外,通过Materials Studio模拟计算获得了水分子与MIL-125(Ti)及NH_2-MIL-125(Ti)作用的吸附焓,也证明氨基功能化对MIL-125(Ti)的湿度敏感性能具有增强作用。  相似文献   

19.
The effect of a carbon-carbon double bond on the energy required for decomposition in an electron beam-generated plasma reactor is studied by comparing the decomposition of trichloroethylene and 1,1,1-trichloroethane. A reaction mechanism for TCE decomposition based on a chlorine radical chain reaction is presented which accounts for the formation of all of the experimentally observed reaction products. TCE decomposition is autocatalyzed by reaction products, whereas TCA decomposition is inhibited. The rate expression for the decomposition of TCE in the reactor is determined to be r=−[T](15.07[T0]−0.40+0.006{[T0]−[T]}), where [T] and [T0] are both in ppm, and r is in ppm Mrad−1. The energy expense ɛ for TCE decomposition is determined as a function of inlet concentration. For 99% decomposition of 100 ppm TCE in air, ɛ=28 eV/molecule, and ɛ=2.5 eV/molecule at 3000 ppm. This is only 2.5–5% of the amount of energy required to decompose a similar amount of TCA as reported by the authors in a previous study. By comparing the energy requirements for TCE decomposition to those for TCA decomposition, the TCE reaction chain length is determined to increase from approximately 20 at 100 ppm initial TCE concentration, to 40 at 3000 ppm. This work was supported by the Contaminant Plume Containment and Remediation Focus Area, Office of Environmental Management, U.S. Department of Energy.  相似文献   

20.
In this work, poly(2‐ethyl‐2‐oxazoline) (PEtOx) is crosslinked to realize a moisture‐ and thermo‐responsive shape‐memory polymer. The obtained PEtOx networks exhibit excellent shape‐memory properties with storable strains of up to 650% and recovery values of 100% over at least 10 shape‐memory cycles. The trigger temperature (Ttrig) of 68 °C of a PEtOx network at a relative humidity (RH) of 0% decreases with increasing moisture and equals room temperature at an RH of 40%. Thus, programmed PEtOx networks trigger sensitively on a certain temperature/moisture combination and, further, can be programmed as well as triggered at room temperature exclusively by varying humidity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1053–1061  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号