首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS) quantitative detection method, using cefalexin as internal standard, was developed for the analysis of faropenem in human plasma and urine. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C18 reversed-phase column with 0.1% formic acid-methanol (45:55, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves with good linearities (r=0.9991 for plasma sample and r=0.9993 for urine sample) were obtained in the range 5-4000 ng/mL for faropenem. The limit of detection was 5 ng/mL. Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of faropenem in humans, and to our knowledge, it is the first time the pharmacokinetic of faropenem has been elucidated in vivo using LC-MS/MS.  相似文献   

2.
The simultaneous determination of iodine and bromine in plasma and urine by inductively coupled plasma mass spectrometry, using a Nermag prototype instrument, is described. The sample preparation involves only a 10-fold dilution with a diluent containing europium as an internal standard followed by direct nebulisation in the plasma. The iodine, bromine and europium ions are measured at m/z = 127, 79, and 153, respectively. The sensitivity of the method, with detection limits of 1.6 and 52 micrograms l-1 for iodine and bromine, respectively, is satisfactory for clinical applications. The calibration graphs were linear over the ranges 0-400 micrograms l-1 and 0-40 mg l-1 for iodine and bromine, respectively, which are wide enough for most assays. The recoveries were close to 100% with coefficients of variation of less than 3%. The within-day and between-day reproducibility was about 5%. The concentrations of iodine and bromine in the plasma of 26 healthy individuals were 58 +/- 12 micrograms l-1 and 4.1 +/- 0.9 mg l-1, respectively. The amounts of iodine and bromine eliminated in urine were 94 +/- 97 micrograms per 24 h (range 27-403 micrograms per 24 h) and 3.6 +/- 1.7 mg per 24 h, respectively. These results are in agreement with reported values.  相似文献   

3.
A highly sensitive and specific assay has been developed for the determination of calcium acetylhomotaurinate and the internal standard (LM 3041) at the picomole level in human plasma and urine by gas chromatography-mass spectrometry with methane as the reagent gas. After a multiple-step extraction process, the cleaned-up organic extract was derivatized with pentafluorobenzoyl chloride at ambient temperature. Subsequently, chlorination followed by amidation of the sulphonic acid group led to the N-pentafluorobenzoyl di-n-butylamide derivatives. The mass spectrometer was set to monitor the abundant [M - HF]- ions (m/z 424 and 438), which were generated in the ion source switched in the negative-ion chemical ionization mode. This assay required 1 ml of plasma or 50 microliters of urine, and the detection limit was 1 ng/ml. The accuracy of the assay was tested day by day with quality control specimens spiked blind to the analyst. The mean difference between the theoretical and actual values was less than 8%.  相似文献   

4.
A method developed to determine organic and inorganic selenium species in human urine samples is presented in detail. After a simple sample treatment based on elimination of non-charged organic compounds, selenium species were separated by high performance liquid chromatography (HPLC) on a Spherisorb 5 ODS/AMINO column using two different chromatographic conditions: phosphate buffers at pH 2.8 and 6.0. Detection was carried out using an on-line inductively coupled plasma mass spectrometer (ICP-MS). Trimethylselenonium ion and two unknown selenium species in urine samples were found. Selenium species were shown to have stability problems, with the maximum allowed storage time of 1 week.  相似文献   

5.
Selenium species, selenite, selenate, selenomethionine (Semet), seneloethionine (Seet) and trimethylselenonium ion (TmSe) were separated in aqueous solution using a gel-permeation (polyvinyl alcohol-based resin) GS-220 column by eluting with 25 mM tetramethylammonium hydroxide and 25 mM malonic acid at pH 7.9. The GS-220 column coupled with inductively coupled plasma mass spectrometry was used for the separation, identification, and quantification of selenium compounds present in certified reference material (CRM) No. 18 human urine from the National Institute for Environmental Studies in Japan (NIES). Spiking of the authentic standard to the urine and use of a silica-based LC-SCX cation-exchange column validated the peak of selenium compounds. High concentrations of chloride and bromide in the urine eluted from the GS-220 column formed molecular ions 40Ar37Cl+ and 81Br1H+ in the plasma, and these molecular ions created additional peaks in the chromatograms when 77Se and 82Se isotopes were monitored respectively. Thus, both the isotopes were selected concurrently for signal monitoring to eliminate the interfering signals. On the LC-SCX column, chloride and bromide were eluted with selenate and complicated its determination, but the peak of TmSe was baseline separated from rest of the Se compounds. Two unknown Se compounds were detected in both the columns. An additional Se compound having the same retention time as that of Semet was detected on the LC-SCX column. Peaks of selenite, selenate, TmSe and unknown selenium compounds in the urine were baseline separated on the GS-220 column, and were free from interferences. Therefore, the GS-220 column was used for the determination of selenium compounds in NIES CRM No. 18. Unknown Se compounds were the predominant selenium species followed by selenite, TmSe and selenate. The estimated value of TmSe as Se, by the standard additions method using the GS-220 column, was 3.42 +/- 0.17 microg l(-1) and was in good agreement with the LC-SCX value [3.38 +/- 0.21 (n=5) microg l(-1)].  相似文献   

6.
A collaborative study was conducted to evaluate the accuracy and precision of a method for ephedrine-type alkaloids (i.e., norephedrine, norpseudoephedrine, ephedrine, pseudoephedrine, methylephedrine, and methylpseudoephedrine) in human urine and plasma. The amount of ephedrine-type alkaloids present was determined using liquid chromatography (LC) with tandem mass selective detection. The test samples were diluted to reflect a concentration of 5.00-100 ng/mL for each alkaloid. An internal standard was added and the alkaloids were separated using a 5 microm phenyl LC column with an ammonium acetate, glacial acetic acid, acetonitrile, and water mobile phase. Eight blind duplicates of human urine and eight blind duplicates of human plasma were analyzed by 10 collaborators. In addition to negative controls, test portions of urine and plasma were fortified at 3 different levels with each of the 6 ephedrine-type alkaloids at approximately 1, 2, and 5 microg/mL for urine and 100, 200, and 500 ng/mL for plasma. On the basis of the accuracy and precision results for this collaborative study, it is recommended that this method be adopted Official First Action for the determination of 6 different ephedrine-type alkaloids in human urine and plasma.  相似文献   

7.
8.
A method was developed for the determination of rare earth elements (REEs) in urine with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICPMS). The undiluted sample was directly injected into the graphite tube and trifluoromethane (Freon-23) was used as chemical modifier in order to reduce the vaporization temperature and the memory effect of most of the lanthanides. The detection limits were in the range 1-10 ng/L with relative standard deviation of 3-5% at concentration levels of 1microg/L, and less than 10-15% at 100 ng/L. Two different procedures, external calibration and a standard additions method, were evaluated to measure the concentration levels of lanthanides in the urine samples and the second procedure was considered to be the best choice for calibration in this work. The level of REEs in urine of 50 healthy volunteers was in the range 5-20 ng/L, above the detection limit of ETV-ICPMS.  相似文献   

9.
A method was developed to determine simazine, atrazine and their metabolite, 2-chloro-4,6-diamino-1,3,5-triazine, in urine. The presence of these herbicides in urine may reflect possible exposure to pesticides. Sample preparation involved protein precipitation and solid-phase extraction. The samples were analyzed by high-performance liquid chromatography-mass spectrometry. The detection limits were 0.4 microg/l and the analytes have a linear response in the interval 6-800 microg/l. The precision of the method was reflected in the RSD of < 2.4% for the herbicides studied. Based on the detectable herbicide levels from spiked urine samples collected from unexposed volunteers, this method can be used to determine the low levels necessary for establishing reference values of the selected herbicides and the metabolite.  相似文献   

10.
We present a highly sensitive, rapid method for the determination of ruthenium originating from the investigational anti-cancer drug NAMI-A in human plasma ultrafiltrate, plasma, and urine. The method is based on the quantification of ruthenium by inductively coupled plasma mass spectrometry and allows quantification of 30 ng L(-1) ruthenium in plasma ultrafiltrate and urine, and 75 ng L(-1) ruthenium in human plasma, in 150 microL of matrix. The sample pretreatment procedure is straightforward and only involves dilution with appropriate diluents. The performance of the method, in terms of accuracy and precision, fulfilled the most recent FDA guidelines for bioanalytical method validation. Validated ranges of quantification were 30.0 to 1 x 10(4) ng L(-1) for ruthenium in plasma ultrafiltrate and urine and 75.0 to 1 x 10(4) ng L(-1) for ruthenium in plasma. The applicability of the method and its superiority to atomic-absorption spectrometry were demonstrated in two patients who were treated with intravenous NAMI-A in a phase I trial. The assay is now successfully used to support pharmacokinetic studies in cancer patients treated with NAMI-A.  相似文献   

11.
The Platinum Group Elements (PGEs) used in automotive catalytic converters are partly emitted into the air during use and can enter the human respiratory system. Due to the increasing use of automotive catalytic converters, the importance of this problem cannot be overlooked.The goal of this investigation was to determine the concentration of Pt in the urine of individuals occupationally exposed to urban air with heavy traffic. Sector field inductively coupled plasma mass spectrometry (SF–ICP–MS) was used for determination of Pt in the urine of tram drivers. 38 and 34 subjects were investigated in Vienna and Budapest, respectively. Samples were taken from the tram drivers both before and after the shift.The results for Pt were compared to those from a previous study performed by our team. The comparison showed that the concentration medians were 4 times higher than the previous ones. Moreover, the values in Budapest were about twice as high as those from Vienna. A partly significant change could be observed between the two sets of data: before, and after the shift.  相似文献   

12.
A rapid and sensitive method for the determination of miglitol in human plasma using voglibose as internal standard has been developed and validated. Samples of plasma were deproteinated with acetonitrile and washed with dichloromethane before being analyzed by reversed-phase high-performance liquid chromatography (HPLC). Separation was carried out on a short Nucleosil C(18) column (5 microm, 50 x 4.6 mm i.d.) using 10 mmol/L ammonium acetate at 1.0 mL/min as mobile phase. The detector was an Applied Biosystems Sciex API 4000 mass spectrometer using atmospheric pressure chemical ionization (APCI) for ion production. The instrument was operated at unit resolution in the multiple reaction monitoring mode. The assay was linear over the range 5.00-2000 ng/mL with a limit of detection of 1.00 ng/mL. Intra- and inter-day precision were <2.82% and <2.92%, respectively, with accuracy of 93.3-106%. The assay was successfully applied to a clinical pharmacokinetic study of miglitol given as a single oral dose (50 mg) to healthy volunteers.  相似文献   

13.
张晓艺  张秀尧  蔡欣欣  李瑞芬 《色谱》2018,36(10):979-984
建立了离子色谱-三重四极杆质谱测定血浆和尿液样品中氟乙酸(MFA)的方法。血浆样品经高氯酸超声提取,尿液样品经高氯酸酸化,血浆和尿液提取液在pH 0.5~1.0条件下用叔丁基甲醚(MTBE)萃取,萃取液经氮吹浓缩后溶于0.1%(v/v)氨水溶液。以Ionpac AS 19型阴离子色谱柱为分析柱,在线自动产生的氢氧化钾作为淋洗液进行梯度分离,柱流出液经阴离子抑制器抑制后进入质谱系统。采用电喷雾电离源,在负离子、多离子监测(MRM)模式下检测,13C2-氟乙酸稳定同位素内标法定量。血浆和尿液样品中氟乙酸的平均加标回收率为96.2%~120%,相对标准偏差为1.1%~13.1%(n=6),方法的检出限(S/N=3)分别为0.03 μg/L和0.1 μg/L。该法简单、灵敏、准确,可用于生物样品中氟乙酸的检测。  相似文献   

14.
A rapid, sensitive and specific high-performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the determination of oxatomide in human plasma. Flunarizine hydrochloride was employed as the internal standard (IS). The analytes were chromatographically separated on a Shimadzu Shim-pack VP-ODS C18 column (250 x 2.0 mm i.d.) with a mobile phase consisting of methanol and aqueous ammonium acetate solution (10 mm, pH 4.0; 85:15, v/v). Detection was performed on a single quadrupole mass spectrometer using an electrospray ionization interface with the selected-ion monitoring (SIM) mode. The method showed excellent linearity (r = 0.9995) over the concentration range of 0.5-500 ng/mL with good accuracy and precision. The intra- and inter-batch precisions were within 10% relative standard deviation. The recoveries were more than 90%. The validated method was successfully applied to a preliminary pharmacokinetic study of oxatomide in Chinese healthy male volunteers.  相似文献   

15.
林强  杨超  李美丽  王佳  侯瀚然  邵兵  牛宇敏 《色谱》2023,41(3):274-280
人体生物基质中麻痹性贝类毒素的检测对其引起的食物中毒诊断和救治具有重要意义。研究建立了超高效液相色谱-串联质谱法测定血浆、尿液中14种麻痹性贝类毒素的分析方法。实验比较了不同固相萃取柱的影响,优化了前处理条件和色谱条件,血浆样品采用0.2 mL水、0.4 mL甲醇、0.6 mL乙腈提取后直接上机测定,尿液样品采用0.2 mL水、0.4 mL甲醇、0.6 mL乙腈提取,聚酰胺(PA)固相萃取柱净化后上机测定。采用Poroshell 120 HILIC-Z色谱柱(100 mm×2.1 mm,2.7μm)对14种贝类毒素进行分离,流动相为含0.1%(v/v)甲酸的5 mmoL/L甲酸铵缓冲溶液和0.1%(v/v)甲酸乙腈溶液,流速为0.50 mL/min。在电喷雾模式(ESI)下进行正负离子扫描,采用多反应监测(MRM)模式检测,外标法定量。结果表明,对于血浆和尿液样品,14种贝类毒素分别在0.24~84.06 ng/mL范围内线性关系良好,相关系数均大于0.995。尿液检测的定量限为4.80~34.40 ng/mL,血浆检测的定量限为1.68~12.04 ng/mL。尿液和血浆样品在1、2和10倍定量限加标水平下平均回收率为70.4%~123.4%,日内精密度为2.3%~19.1%,日间精密度为4.0%~16.2%。应用建立的方法对腹腔注射14种贝类毒素小鼠血浆和尿液进行测定,20份血浆样本中检出含量分别为19.40~55.60μg/L和8.75~13.86μg/L。该方法操作简便,样品取样量少,方法灵敏度高,适用于血浆和尿液中麻痹性贝类毒素的快速检测。  相似文献   

16.
An accurate and precise method for the determination of total 19-norandrosterone (19-NA), a major metabolite of nandrolone, in human urine was developed based on isotope dilution gas chromatography-high resolution mass spectrometry (ID GC-HRMS). The 19-NA glucuronide, together with deuterated 19-NA (d4-19-NA) (as the internal standard, IS), was subjected to enzymatic hydrolysis using β-glucuronidase, followed by solid phase extraction (XtractT, mixed-mode column) and liquid–liquid extraction cleanup. The native and deuterated analogues of 19-NA were then derivatised to the corresponding bis(trimethylsilyl) derivatives using N-methyl-N-trimethylsilyltrifluoroacteamide (MSTFA):NH4I:Dithiothretitol (1,000:2:3 w/w). Identification was achieved under selected ion monitoring of the respective trimethylsilyl derivatives at ion masses m/z 405.26450 and 420.28800 for 19-NA and m/z 409.28920 and 424.31270 for d4-19-NA within the specific time windows (±1% of the relative retention time to the calibration standard). A linear calibration curve (r 2 > 0.9995) was obtained based on seven calibration points (five replicates at each level) in the range 0.05–10 ng/g. The detection limit for 19-NA was found to be 4 pg/g. The method has been applied for the determination of 19-NA by fortifying 19-NA glucuronide at three concentrations (0.2, 2.1 and 7.2 ng/g) in blank urine samples with excellent accuracy and reproducibility. To circumvent the iterative process of exacting matching, a single-point calibration procedure was adopted, where the acceptance criteria for the isotopic ratio in the sample (RF s) and calibration blends (RF c) was set close to unity (0.95–1.05). This method was successfully applied in a pilot inter-comparison study, with results in good agreement with the fortified value and other participants’ results (relative standard deviation, RSD < 2.0%) with an expanded relative uncertainty (coverage factor of 2 at 95% confidence level) of 4.7%. It was found in our determination that the main contributors to the uncertainty budget originated from the measurements of the purity of the reference material and the response factor of the calibration standard.  相似文献   

17.
18.
建立了同时检测人尿液中7种邻苯二甲酸酯代谢物的高效液相色谱-串联三重四极杆质谱法。尿液经酶水解后,采用萃取柱净化,以2%(v/v)甲酸甲醇溶液为洗脱剂,经苯基柱分离,以0.1%(v/v)乙酸水溶液和0.1%(v/v)乙酸乙腈溶液为流动相进行梯度洗脱,采用电喷雾离子源负离子模式和多反应监测模式采集信号,用同位素内标法进行定量分析。尿液中7种邻苯二甲酸酯代谢物在0.2~200.0 μg/L范围内定量离子的相对峰面积比值与质量浓度均呈良好线性关系(r≥0.99976);检出限(LOD)为13.43~80.21 ng/L,定量限为44.77~267.37 ng/L; 3个水平的加标回收率为88.8%~108.9%,日内和日间精密度均不大于17.05%。该方法可同时准确、灵敏、简便地测定人尿液中7种邻苯二甲酸酯代谢物的暴露水平。  相似文献   

19.
Imidol hydrochloride is a novel drug for the treatment of hepatitis B virus infection. A simple, special and sensitive solid‐phase extraction liquid chromatography–tandem mass spectrometry method for determination of imidol in human plasma and urine was developed for the first time and applied to a pharmacokinetic study. The chromatographic separation was achieved on a C18 column (50 × 2.1 mm, 3.5 µm) using gradient elution with acetonitrile and water both containing 0.1% acetic acid at a flow rate of 0.25 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via a positive eletrospray ionization source. The mass transition pairs of m/z 517.8 → 325 and m/z 298 → 174 were used to detect imidol and the (?)‐clausenamide (internal standard), respectively. The retention times of imidol and (?)‐clausenamide were 2.5 and 2.7 min, respectively. Linearity, accuracy, precision, recovery, matrix effect, dilution test and stability were evaluated during method validation over the range of 0.2–500 ng/mL in human plasma and 0.5–500 ng/mL in urine. The method was successfully applied to a clinical pharmacokinetic study of imidol in healthy volunteers following oral administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
方力  邱凤梅  余新威 《色谱》2021,39(3):338-345
鹅膏肽类毒素是一类环状多肽类蘑菇毒素,中毒后会造成急性肝损伤,病死率非常高。我国因误食野生毒蘑菇导致的中毒事件常有发生,测定人尿中鹅膏肽类毒素的浓度,可为临床早期诊断和救治提供有价值的信息。该研究建立了TurboFlow (TF)在线净化-液相色谱-三重四极杆质谱快速定量检测尿液中5种鹅膏肽类毒素(α-鹅膏毒肽、β-鹅膏毒肽、γ-鹅膏毒肽、羧基二羟鬼笔毒肽和二羟鬼笔毒肽)的新方法。尿液样品经高速离心后,直接注入TurboFlow在线净化-液相色谱-串联质谱进行分析。对影响TF在线净化的参数如TF净化柱、上样溶剂、洗脱溶剂、转移流速、转移时间等进行了优化。在优化后的实验条件下,以TurboFlowTMCyclone柱(50 mm×0.5 mm)为净化柱,Hypersil GOLD C18柱(100 mm×2.1 mm)为分析柱,甲醇和4 mmol/L乙酸铵为流动相进行梯度洗脱,电喷雾正离子选择反应监测(SRM)模式下进行检测,基质匹配外标法定量。结果表明,鹅膏肽类毒素在1.0~50.0 μg/L范围内呈现良好的线性关系,相关系数均可达到0.997以上。方法的检出限为0.15~0.3 μg/L,定量限为0.5~1.0 μg/L。在2.0、5.0和10.0 μg/L的加标水平下,5种鹅膏肽类毒素的日内和日间回收率分别为87.0%~108.6%和86.8%~112.7%,日内、日间相对标准偏差(RSD)均小于14.5%。该检测方法准确、快速、灵敏度高、易操作,适用于公共卫生应急检测或临床中毒病因识别检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号