首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of brominated flame retardants (BFRs) on the environment and their potential risk in animal and human health is a present concern. Therefore, existing legislation in the European Union demands that polymers with BFRs are identified and eliminated from the recycling process due to their potential health hazard.In this work, a flow-injection (FI) system coupled to inductively coupled plasma-mass spectrometry (ICP-MS) was optimized for the detection of traces of bromine in polymers, plastic paints and enamels containing BFRs. Sample preparation requires a microwave-assisted digestion in order to transfer bromine in polymeric samples to solution. After appropriate optimization of the digestion procedure and the ICP-MS detection, a detection limit (DL) of 4.2 mg kg−1 was obtained for synthesized polyurethane standards containing known concentrations of bromine. The precision of the proposed method, evaluated as the R.S.D. of signals obtained for three replicates of polymeric standard BFRs at the normative EU level, was as low as 3.6%.This simple developed methodology was characterized for the screening of bromine in polymeric matrices. The proposed system provides rapid binary yes/no overall responses, being appropriate for the screening of bromine above a pre-set concentration threshold. The unreliability region (UR), given by the probability of false positives and false negatives (set at 5% in both cases), was in the range between 442 and 678 mg kg−1 of bromine (at a cut-off level of 0.1% in BFRs by weight of homogeneous material fixed by the EU normative). Finally, the applicability of the proposed screening system was tested for the reliable control of bromine in different commercial samples including flame-retardant paints and enamels.  相似文献   

2.
Chemical category is a regulatory concept facilitating filling safety data gaps. Practically, all chemical management programs like the OECD HPV Program, EU REACH, or the Canadian DSL Categorization are planning to use or are already using categorization approaches to reduce resources including animal testing. The aim of the study was to discuss the feasibility to apply computational structural similarity methods to augment formation of a category. The article discusses also how this understanding can be translated into computer readable format, an ultimate need for practical, broad scope applications. We conclude that for the skin sensitization endpoint, used as a working example, mechanistic understanding expressed as chemical reactivity can be exploited by computational structural similarity methods to augment category formation process. We propose a novel method, atom environments ranking (AER), to assess similarity to a reference training set representing a common mechanism of action, as a potential method for grouping chemicals into reactivity domains.  相似文献   

3.
Chemical category is a regulatory concept facilitating filling safety data gaps. Practically, all chemical management programs like the OECD HPV Program, EU REACH, or the Canadian DSL Categorization are planning to use or are already using categorization approaches to reduce resources including animal testing. The aim of the study was to discuss the feasibility to apply computational structural similarity methods to augment formation of a category. The article discusses also how this understanding can be translated into computer readable format, an ultimate need for practical, broad scope applications. We conclude that for the skin sensitization endpoint, used as a working example, mechanistic understanding expressed as chemical reactivity can be exploited by computational structural similarity methods to augment category formation process. We propose a novel method, atom environments ranking (AER), to assess similarity to a reference training set representing a common mechanism of action, as a potential method for grouping chemicals into reactivity domains.  相似文献   

4.
The present article reviews the available literature on the analytical and environmental aspects of tetrabromobisphenol-A (TBBP-A), a currently intensively used brominated flame retardant (BFR). Analytical methods, including sample preparation, chromatographic separation, detection techniques, and quality control are discussed. An important recent development in the analysis of TBBP-A is the growing tendency for liquid chromatographic techniques. At the detection stage, mass-spectrometry is a well-established and reliable technology in the identification and quantification of TBBP-A. Although interlaboratory exercises for BFRs have grown in popularity in the last 10 years, only a few participating laboratories report concentrations for TBBP-A. Environmental levels of TBBP-A in abiotic and biotic matrices are low, probably due to the major use of TBBP-A as reactive FR. As a consequence, the expected human exposure is low. This is in agreement with the EU risk assessment that concluded that there is no risk for humans concerning TBBP-A exposure. Much less analytical and environmental information exists for the various groups of TBBP-A derivatives which are largely used as additive flame retardants.  相似文献   

5.
A new analytical method was established and validated for the analysis of 27 brominated flame retardants (BFRs), including so called “emerging” and “novel” BFRs (EBFRs and NBFRs) in fish samples. High performance liquid chromatography (HPLC) coupled to Orbitrap mass spectrometry (Orbitrap-MS) employing atmospheric pressure photoionization (APPI) interface operated in negative mode was used for the identification/quantitation of contaminants. HPLC-Orbitrap-MS analysis provided a fast separation of selected analytes within 14 min, thus demonstrating a high throughput processing of samples. The developed methodology was tested by intralaboratory validation in terms of recovery, repeatability, linear calibration ranges, instrumental and method limits of quantitation (i-LOQ and m-LOQ), and where possible, trueness was verified by analysis of certified reference materials (CRMs). Recoveries of analytes were between 80 and 119%, while the repeatability in terms of relative standard deviations (RSDs) was in the range from 1.2 to 15.5%. The measured values for both analyzed CRMs agreed with the provided consensus values, revealing the recovery of reference concentrations in 72–119% range. The elaborated method met the sensitivity criterion according to Commission Recommendation 2014/118/EU on monitoring of BFRs in food products for majority of the compounds. The concentrations of polybrominated diphenyl ethers (PBDEs) in real samples determined by HPLC-APPI-Orbitrap-MS method and validated gas chromatography–high-resolution mass spectrometry (GC–HRMS) method were found to be in a good agreement.  相似文献   

6.
Brominated flame retardants (BFRs) comprise diverse chemical compounds used in a variety of commercial applications. Those used most are polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). The impact of BFRs on the environment and their potential risks for animals and humans is of concern to the scientific community. A number of studies have reported analytical methods and levels of some BFRs, especially PBDEs, in sediments and biota. However, there is much less literature relating to sewage sludge and treated soil. In this article, we discuss the use of different sample-preparation techniques applied to these matrices, as well as the different approaches to mass spectrometry (MS). Finally, we review the available data concerning the occurrence of BFRs in sewage sludges, before presenting our conclusions and outlining future perspectives.  相似文献   

7.
Recent policy developments in the European union (EU) and within the Organisation for Economic Cooperation and Development (OECD) have placed increased emphasis on the use of structure-activity relationships (SARs) and quantitative structure-activity relationships (QSARs), collectively referred to as (Q)SARs, within various regulatory programmes for the assessment of chemicals and products. The most significant example within the EU is the European commission's proposal (of 29 October 2003) to introduce a new system for managing chemicals (called REACH), which calls for an increased use of (Q)SARs and other non-animal methods, especially for the assessment of low production volume chemicals. Another development within the EU is the Seventh Amendment to the Cosmetics Directive, which foresees the phasing out of animal testing on cosmetics, combined with the imposition of marketing bans on cosmetics that have been tested on animals after certain deadlines. At the same time, the Existing Chemicals programme within the OECD is investigating ways of increasing the use of chemical category approaches, which depend heavily on the use of (Q)SARs, activity-activity relationships and read-across. Such developments are placing an enormous challenge on industry, regulatory bodies, and on the European commission's Joint Research Centre (JRC), which is responsible for providing independent scientific advice to policy makers in the European Commission and the Member States. This paper reviews the different scientific and regulatory purposes for which reliable (Q)SARs could be used, and describes the current work of the JRC in providing scientific support for the development, validation and implementation of (Q)SARs.  相似文献   

8.
In 2001, the European Commission published a policy statement ("White Paper") on future chemicals regulation and risk reduction that proposed the use of non-animal test systems and tailor-made testing approaches, including (Q)SARs, to reduce financial costs and the number of test animals employed. The authors have compiled a database containing data submitted within the EU chemicals notification procedure. From these data, (Q)SARs for the prediction of local irritation/corrosion and/or sensitisation potential were developed and published. These (Q)SARs, together with an expert system supporting their use, will be submitted for official validation and application within regulatory hazard assessment strategies. The main features are: two sets of structural alerts for the prediction of skin sensitisation hazard classification as defined by the European risk phrase R43, comprising 15 rules for chemical substructures deemed to be sensitising by direct action with cells or proteins, and three rules for substructures acting indirectly, i.e., requiring biochemical transformation; a decision support system (DSS) for the prediction of skin and/or eye lesion potential built from information extracted from our database. This DSS combines SARs defining reactive chemical substructures relevant for local lesions to be classified, and QSARs for the prediction of the absence of such a potential. The role of the BfR database, and (Q)SARs derived from it, in the use of current and future (EU) testing strategies for irritation and sensitisation is discussed.  相似文献   

9.
Abstract Following a previous collaborative EU/EPA project focussed on QSAR predictions for a selection of new chemicals which had been notified in the EU, a similar exercise was started in 1993 on existing chemicals. In a first phase, the project addresses the High Production Volume (HPV) chemicals which are produced or imported at levels above a 1000t/year in the EU and 454t/year in the US. The relevant EU (Annex 1 of Existing Chemicals Regulation No. 793/93) and US-EPA lists contain 1036 and 2881 organic substances respectively of which HPV 749 chemicals are in common. The joint project aims at an estimation through validated QSAR models of the physical-chemical, ecotoxicity and toxicity endpoints which are included in the regulation and where experimental data will become available in IUCLID (International Unified Chemicals Information Database). Next to EC-JRC (ECB) and US-EPA, various laboratories in the EU are contributing to the project and recently, two institutes in Japan have joined in this project.  相似文献   

10.

In 2001, the European Commission published a policy statement ("White Paper") on future chemicals regulation and risk reduction that proposed the use of non-animal test systems and tailor-made testing approaches, including (Q)SARs, to reduce financial costs and the number of test animals employed. The authors have compiled a database containing data submitted within the EU chemicals notification procedure. From these data, (Q)SARs for the prediction of local irritation/corrosion and/or sensitisation potential were developed and published. These (Q)SARs, together with an expert system supporting their use, will be submitted for official validation and application within regulatory hazard assessment strategies. The main features are: ? two sets of structural alerts for the prediction of skin sensitisation hazard classification as defined by the European risk phrase R43, comprising 15 rules for chemical substructures deemed to be sensitising by direct action with cells or proteins, and three rules for substructures acting indirectly, i.e., requiring biochemical transformation; ? a decision support system (DSS) for the prediction of skin and/or eye lesion potential built from information extracted from our database. This DSS combines SARs defining reactive chemical substructures relevant for local lesions to be classified, and QSARs for the prediction of the absence of such a potential. The role of the BfR database, and (Q)SARs derived from it, in the use of current and future (EU) testing strategies for irritation and sensitisation is discussed.  相似文献   

11.
Risk assessment of emerging contaminants in aquatic systems   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
Abstract

The Office of Pollution Prevention and Toxics (OPPT), United States Environmental Protection Agency (USEPA) routinely uses structure-activity relationships (SAR) for the aquatic hazard assessment of new chemicals submitted under Section 5 of the Toxic Substances Control Act (TSCA). With 15 years of experience and the general acceptance of toxicity predictions based on SARs, OPPT has expanded the use and application of the methodology to include existing chemicals used in printing, dry cleaning, and paint stripping. SAR analysis has also been used in the hazard evaluation of the U.S. and EU/OECD high production volume (HPV) chemicals. This paper describes the assumptions, limitations, and methodology for the use of SARs to evaluate large sets of discrete organic chemicals.  相似文献   

14.
This article reviews recent literature on the analysis of brominated flame retardants (BFRs) and brominated natural compounds (BNCs). The main literature sources are reviews from the last five years and research articles reporting new analytical developments published between 2003 and 2006. Sample pretreatment, extraction, clean-up and fractionation, injection techniques, chromatographic separation, detection methods, quality control and method validation are discussed. Only few new techniques, such as solid-phase microextraction (SPME) or pressurized liquid extraction (PLE), have been investigated for their ability of combining the extraction and clean-up steps. With respect to the separation of BFRs, the most important developments were the use of comprehensive two-dimensional gas chromatography for polybrominated diphenyl ethers (PBDEs) and the growing tendency for liquid-chromatographic techniques for hexabromocyclododecane (HBCD) stereoisomers and of tetrabromobisphenol-A (TBBP-A). At the detection stage, mass spectrometry (MS) has been developed as well-established and reliable technology in the identification and quantification of BFRs. A growing attention has been paid to quality assurance. Interlaboratory exercises directed towards BFRs have grown in popularity and have enabled laboratories to validate analytical methods and to guarantee the quality of their results. The analytical procedures used for the identification and characterization of several classes of BNCs, such as methoxylated polybrominated diphenyl ethers (MeO-PBDEs) (also metabolites of PBDEs), halogenated methyl or dimethyl bipyrroles (DBPs), are reviewed here for the first time. These compounds were generally identified during the routine analysis of BFRs and have received little attention until recently. For each topic, an overview is presented of its current status.  相似文献   

15.
16.
Incoming legislation on the registration, evaluation, authorisation and restriction of chemical substances places responsibility on the chemical industry, including downstream users of chemicals, to provide appropriate safety information with which to improve the protection of human health and the environment through the better and earlier identification of the intrinsic properties of chemical substances. Food consumption is only one of several potential exposure routes, but if industrial chemicals enter the food chain, the diet may be a significant pathway of human exposure. Consequently strong measures are taken to protect the integrity of the human food chain and these are constantly revised to address perceived chemical safety threats. In order to understand the risk presented by the possible presence of a chemical residue in food, knowledge is required of its toxicology and of the level of exposure. Reliable exposure assessment requires robust analytical methodology. Existing standards for the validation and performance evaluation of methods have led to improved analytical capability and better inter-laboratory agreement of results. However, increasing the availability of robust, cost-effective methodology should be the benchmark for future developments in the field of food chemical residue analysis. Chromatography meets the needs of target analyses well and largely provides the selectivity of measurement needed to assess compliance with food regulatory limits. However, to keep pace with the increased need for expanded analytical capability – faster throughput, more analytes per sample – chromatographic separation capability still needs to grow. In this respect, orthogonal separation techniques and multi-dimensional chromatography are key tools for the future.  相似文献   

17.
4-Nonylphenols (NPs) are very important environmentally relevant substances. They are persistent, toxic, endocrine-disrupting chemicals that are priority hazardous substances of the EU Water Framework Directive. NPs are degradation products of 4-nonylphenol ethoxylates (NPEs), a widely used group of nonionic surfactants. The technical synthesis of NP leads to a complex mixture of NPs consisting of isomeric compounds that have different branched nonyl side chains. It has recently become clear that an isomer-specific view is absolutely necessary when it comes to correctly evaluating the biological effects of NPs and their behavior in the environment, including degradation processes. To rationalize the identification of individual NP isomers in scientific studies, we have developed a numbering system for all possible NP isomers that follows the IUPAC rules of substituent characterization in alkylphenols. The 211 possible constitutional isomers of NP are numbered according to a hierarchical and logical system. In the future, multidimensional coupling systems—for example GC×GC-TOF-MS—will be needed to study these highly complex class of substances. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

18.
溴系阻燃剂在环境及人体中的存在和代谢转化   总被引:9,自引:0,他引:9  
溴系阻燃剂的广泛使用及其对环境和人体的危害,受到人们的广泛关注。本文简要介绍了在环境与生态系统及人体中存在的三种主要溴系阻燃剂:多溴联苯醚、六溴环十二烷和四溴双酚A,重点评述了它们在环境介质(污水、淤泥及沉积物)、生物体(微生物及动物)、人体中及光热作用下的代谢与转化,并详细介绍了其代谢途径及代谢产物。  相似文献   

19.
Hazard assessments of chemicals have been limited by the availability of test data and the time needed to evaluate the test data. While available data may be inadequate for the majority of industrial chemicals, the body of existing knowledge for most hazards is large enough to permit reliable estimates to be made for untested chemicals without additional animal testing. We provide a summary of the growing use by regulatory agencies of the chemical categories approach, which groups chemicals based on their similar toxicological behaviour and fills in the data gaps in animal test data such as genotoxicity and aquatic toxicity. Although the categories approach may be distinguished from the use of quantitative structure–activity relationships (QSARs) for specific hazard endpoints, robust chemical categories are founded on quantifying the chemical structure with parameters that control chemical behaviour in conventional hazard assessment. The dissemination of the QSAR Application Toolbox by the Organisation for Economic Cooperation and Development (OECD) is an effort to facilitate the use of the categories approach and reduce the need for additional animal testing.  相似文献   

20.
Although the original interest in labeled compounds was in order to conduct fundamental studies in pharmacology, a more compelling reason for their use soon became evident with the need to obtain metabolic and pharmacokinetic data required for registration of new drugs.A number of aspects of the protocol for registration of new drugs such as whole-body autoradiography, plasma and tissue protein binding etc, require the use of labeled drugs.The labeling of drugs for this purpose involves a number of problems of which the more important are: the choice of radioisotope, the choice of labeled position, the number of steps to obtain the relevant labeling position, the specific acitivity of the labeled compound, the radiochemical and chemical purity and stability, the purification techniques as well as the time required and cost of performing the synthesis of labeled drugs. A newer application of labeled compounds is that of the synthesis of labeled chemicals to be used for Positron Emission Tomography (PET), a very useful technique not only in neurology but also in metabolic and pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号