首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The protein G dimer (pdb code 1Q10) is a mutated dimeric form of the immunoglobulin-binding domain B1 of streptococcal protein G, in which the two monomeric units have swapped elements of their secondary structure. We have used replica exchange molecular dynamics simulations to study how this dimer responds to a mechanical force that pulls the N-terminus of one unit and the C-terminus of the other apart. We have further compared the mechanical response of the dimer to that of the protein G monomer. When the pulling force is low enough, the mechanical unfolding can be viewed as a thermally activated barrier crossing process. For each protein, we have computed the corresponding free energy barrier and its dependence on the pulling force. While the dimer is found to be less resistant to mechanical unfolding than its monomeric counterpart, the two proteins exhibit essentially the same mechanical unfolding mechanism involving separation of the terminal parallel strands. On the basis of our results, we speculate that the mechanical properties of natural adhesives, composites, fibers, and other materials may be optimized not only at a single molecule level but also at the mesoscopic level through the interactions among individual chains.  相似文献   

2.
Directly observing protein folding in real time using atomic force microscopy (AFM) is challenging. Here the use of AFM to directly monitor the folding of an α/β protein, NuG2, by using low‐drift AFM cantilevers is demonstrated. At slow pulling speeds (<50 nm s?1), the refolding of NuG2 can be clearly observed. Lowering the pulling speed reduces the difference between the unfolding and refolding forces, bringing the non‐equilibrium unfolding–refolding reactions towards equilibrium. At very low pulling speeds (ca. 2 nm s?1), unfolding and refolding were observed to occur in near equilibrium. Based on the Crooks fluctuation theorem, we then measured the equilibrium free energy change between folded and unfolded states of NuG2. The improved long‐term stability of AFM achieved using gold‐free cantilevers allows folding–unfolding reactions of α/β proteins to be directly monitored near equilibrium, opening the avenue towards probing the folding reactions of other mechanically important α/β and all‐β elastomeric proteins.  相似文献   

3.
Coiled coils are one of the most abundant protein structural motifs and widely mediate protein interactions and force transduction or sensation. They are thus model systems for protein engineering and folding studies, particularly the GCN4 coiled coil. Major single-molecule methods have also been applied to this protein and revealed its folding kinetics at various spatiotemporal scales. Nevertheless, the folding energy and the kinetics of a single GCN4 coiled coil domain have not been well determined at a single-molecule level. Here we used high-resolution optical tweezers to characterize the folding and unfolding reactions of a single GCN4 coiled coil domain and their dependence on the pulling direction. In one axial and two transverse pulling directions, we observed reversible, two-state transitions of the coiled coil in real time. The transitions equilibrate at pulling forces ranging from 6 to 12 pN, showing different stabilities of the coiled coil in regard to pulling direction. Furthermore, the transition rates vary with both the magnitude and the direction of the pulling force by greater than 1000 folds, indicating a highly anisotropic and topology-dependent energy landscape for protein transitions under mechanical tension. We developed a new analytical theory to extract energy and kinetics of the protein transition at zero force. The derived folding energy does not depend on the pulling direction and is consistent with the measurement in bulk, which further confirms the applicability of the single-molecule manipulation approach for energy measurement. The highly anisotropic thermodynamics of proteins under tension should play important roles in their biological functions.  相似文献   

4.
Motivated by the recent experimental atomic force microscopy (AFM) measurements of the mechanical unfolding of proteins pulled in different directions [D. J. Brockwell et al., Nat. Struct. Biol. 10, 731 (2003); M. Carrion-Vazquez et al., ibid 10, 738 (2003)] we have computed the unfolding free energy profiles for the ubiquitin domain when it is stretched between its (A) N and C termini, (B) Lys48 and C terminus, (C) Lys11 and C terminus, and (D) N terminus and Lys63. Our results for cases (A) and (B) are in good agreement with the experimental unfolding forces measured for the N-C and Lys48-C linked polyubiquitin, in particular, indicating a considerably lower unfolding force in the latter case. Mechanical unfolding in case (A) involves longitudinal shearing of the terminal parallel strands while in case (C) the same strands are "unzipped" by the force. The computed unfolding forces in case (C) are found to be very low, less than 50 pN for pulling rates typical of AFM experiments. The unfolding free energy barrier found in case (C) is approximately 13 kcal/mol, which corresponds to a zero-force unfolding rate constant that is comparable to the rate of chemical unfolding extrapolated to zero denaturant concentration. The unfolding barrier calculated in case (A) in the limit of zero force is much higher, suggesting that mechanical unfolding in this case follows a pathway that is different from that of thermal/chemical denaturation.  相似文献   

5.
Single-molecule experiments in which proteins are unfolded by applying mechanical stretching forces generally force unfolding to proceed along a reaction coordinate that is different from that in chemical or thermal denaturation. Here we simulate the mechanical unfolding and refolding of a minimalist off-lattice model of the protein ubiquitin to explore in detail the slice of the multidimensional free-energy landscape that is accessible via mechanical pulling experiments. We find that while the free-energy profile along typical "chemical" reaction coordinates may exhibit two minima, corresponding to the native and denatured states, the free energy G(z) is typically a monotonic function of the mechanical coordinate z equal to the protein extension. Application of a stretching force along z tilts the free-energy landscape resulting in a bistable (or multistable) free energy G(z)-fz probed in mechanical unfolding experiments. We construct a two-dimensional free-energy surface as a function of both chemical and mechanical reaction coordinates and examine the coupling between the two. We further study the refolding trajectories after the protein has been prestretched by a large force, as well as the mechanical unfolding trajectories in the presence of a large stretching force. We demonstrate that the stretching forces required to destabilize the native state thermodynamically are larger than those expected on the basis of previous experimental estimates of G(z). This finding is consistent with the recent experimental studies, indicating that proteins may refold even in the presence of a substantial stretching force. Finally, we show that for certain temperatures the free energy of a polyprotein chain consisting of multiple domains is a linear function of the chain extension. We propose that the recently observed "slow phase" in the refolding of proteins under mechanical tension may be viewed as downhill diffusion in such a linear potential.  相似文献   

6.
The unfolding of a biomolecule by stretching force is commonly treated theoretically as one-dimensional dynamics along the reaction coordinate coincident with the direction of pulling. Here we explore a situation, particularly relevant to complex biomolecules, when the pulling direction alone is not an adequate reaction coordinate for the unfolding or rupture process. We show that in this case the system can respond to pulling force in unusual ways. Our theory points out a remarkably simple, but largely overlooked, mechanism of the complex responses of biomolecules to force. The mechanism originates from the basic property of the transition state to change its structure under applied force. A relationship is established between a key experimental observable--force-dependent lifetime--and the microscopic properties of the biomolecule in the form of an analytical solution to the problem of a force-induced molecular transition in two dimensions. The theory is applicable to biological contexts ranging from protein folding to ligand-receptor interactions.  相似文献   

7.
Using Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a circular nanocontainer through a nanopore under a driving force F. We observe that the translocation probability initially increases and then saturates with increasing F, independent of φ, which is the average density of the whole chain in the nanocontainer. The translocation time distribution undergoes a transition from a Gaussian distribution to an asymmetric distribution with increasing φ. Moreover, we find a nonuniversal scaling exponent of the translocation time as chain length, depending on φ and F. These results are interpreted by the conformation of the translocated chain in the nanocontainer and the time of an individual segment passing through the pore during translocation.  相似文献   

8.
We present an extremely simplified model of multiple-domain polymer stretching in an atomic force microscopy experiment. We portray each module as a binary set of contacts and decompose the system energy into a harmonic term (the cantilever) and long-range interaction terms inside each domain. Exact equilibrium computations and Monte Carlo simulations qualitatively reproduce the experimental sawtooth pattern of force-extension profiles, corresponding (in our model) to first-order phase transitions. We study the influence of the coupling induced by the cantilever and the pulling speed on the relative heights of the force peaks. The results suggest that the increasing height of the critical force for subsequent unfolding events is an out-of-equilibrium effect due to a finite pulling speed. The dependence of the average unfolding force on the pulling speed is shown to reproduce the experimental logarithmic law.  相似文献   

9.
The folding and unfolding kinetics of single molecules, such as proteins or nucleic acids, can be explored by mechanical pulling experiments. Determining intrinsic kinetic information, at zero stretching force, usually requires an extrapolation by fitting a theoretical model. Here, we apply a recent theoretical approach describing molecular rupture in the presence of force to unfolding kinetic data obtained from coarse-grained simulations of ubiquitin. Unfolding rates calculated from simulations over a broad range of stretching forces, for different pulling directions, reveal a remarkable "turnover" from a force-independent process at low force to a force-dependent process at high force, akin to the "roll-over" in unfolding rates sometimes seen in studies using chemical denaturant. While such a turnover in rates is unexpected in one dimension, we demonstrate that it can occur for dynamics in just two dimensions. We relate the turnover to the quality of the pulling direction as a reaction coordinate for the intrinsic folding mechanism. A novel pulling direction, designed to be the most relevant to the intrinsic folding pathway, results in the smallest turnover. Our results are in accord with protein engineering experiments and simulations which indicate that the unfolding mechanism at high force can differ from the intrinsic mechanism. The apparent similarity between extrapolated and intrinsic rates in experiments, unexpected for different unfolding barriers, can be explained if the turnover occurs at low forces.  相似文献   

10.
A polymer molecule threading through a pore in a plane membrane is allowed to adsorb on either or both sides of the membrane. Further, it is confined to the vicinity of the membrane by two plane barriers lying on either side of the membrane. A lattice model of this problem is exactly solvable by matrix techniques. The equilibrium translocation behavior is described as a function of the polymer MW, the membrane adsorption energies, the solution properties, the barrier separations, applied force, and the temperature. The transition is first-order, meaning that small changes in any of these 9 quantities can in the limit of infinite MW, completely translocate the polymer. The work of Park and Sung who used Smoluchowski-like equations to calculate translocation transit times can be generalized by use of the sea-snake model which is relevant to isolated polymer chains in solution. The physics behind the sea-snake model is that if one monomer is pulled into the membrane, the distance the center of mass of the untranslocated portion of the chain moves is MW−1/2 of the distance between monomer units. This reduces the effective friction coefficient by MW1/2. It is found for the sea-snake model that the MW dependence of transit times varies as MW3/2 or MW depending on whether we use a free draining or a non-free draining picture for the polymer.  相似文献   

11.
We study the influence of polymer pore interactions and focus on the role played by the concentration gradient of salt in the translocation of polyelectrolytes (PE) through nanopores explicitly using coarse-grained Langevin dynamics simulations. The mean translocation time is calculated by varying the applied voltage, the pH, and the salt concentration gradient. Changing the pH can alter the electrostatic interaction between the protein pore and the polyelectrolyte chain. The polymer pore interaction is weakened by the increase in the strength of the externally applied electric field that drives translocation. Additionally, the screening effect of the salt can reduce the strong charge-charge repulsion between the PE beads which can make translocation faster. The simulation results show there can be antagonistic or synergistic coupling between the salt concentration-induced screening effect and the drift force originating from the salt concentration gradient thereby affecting the translocation time. Our simulation results are explained qualitatively with free energy calculations.  相似文献   

12.
We investigate the voltage-driven translocation of an inhomogeneously charged polymer through a nanopore by utilizing discrete and continuous stochastic models. As a simplified illustration of the effect of charge distribution on translocation, we consider the translocation of a polymer with a single charged site in the presence and absence of interactions between the charge and the pore. We find that the position of the charge that minimizes the translocation time in the absence of pore-polymer interactions is determined by the entropic cost of translocation, with the optimum charge position being at the midpoint of the chain for a rodlike polymer and close to the leading chain end for an ideal chain. The presence of attractive and repulsive pore-charge interactions yields a shift in the optimum charge position toward the trailing end and the leading end of the chain, respectively. Moreover, our results show that strong attractive or repulsive interactions between the charge and the pore lengthen the translocation time relative to translocation through an inert pore. We generalize our results to accommodate the presence of multiple charged sites on the polymer. Our results provide insight into the effect of charge inhomogeneity on protein translocation through biological membranes.  相似文献   

13.
In this work, we investigate the effect of hydrodynamic interactions on the dynamics of DNA translocation through micropores. We simulate DNA as a bead-spring chain and use a lattice Boltzmann method to simulate the flow field that arises from the motion of the molecule. We investigate the free-draining entrance of DNA to the pore by diffusion and find that, consistent with experiments, molecules have a higher probability of entering the pore from one end. We then consider the electric-field driven translocation of 21-210 microm DNA with and without hydrodynamic interactions. Consistent with experiments, we study translocation events that are much shorter than the relaxation time of DNA. We find that the effect of hydrodynamic interactions on this process is to cause different regions of a molecule, other than the ones pulled by voltage or chain connectivity into the pore, to move toward the pore. We quantify this effect and show that it is smaller than the difference in the translocation dynamics of chains that arises from different initial configurations of the molecules. A power-law scaling of translocation time with chain length is observed, with exponents of 1.28+/-0.03 and 1.31+/-0.03 in simulations with and without hydrodynamic interactions, respectively. Our results are in good agreement with recent translocation experiments conducted in small pores and show that, for the regime considered in this work, hydrodynamic interactions play a minor role in the relation of the translocation time to chain length. For fast translocation processes, the effect of hydrodynamic interactions is local and the main factor determining the dynamics of DNA is the initial configuration of the molecules.  相似文献   

14.
Dynamic information, such as force, structural change, interaction energy, and potential of mean force (PMF), about the desorption of a single cardiotoxin (CTX) protein from a methyl-terminated self-assembled monolayer (SAM) surface was investigated by means of steered molecular dynamics (SMD) simulations. The simulation results indicated that Loop I is the first loop to depart from the SAM surface, which is in good agreement with the results of the nuclear magnetic resonance spectroscopy experiment. The free energy landscape and the thermodynamic force of the CTX desorption process was represented by the PMF and by the derivative of PMF with respect to distance, respectively. By applying Jarzynski's equality, the PMF can be reconstructed from the SMD simulation. The PMFs, calculated by different estimators based upon Jarzynski's equality, were compared with the conventional umbrella sampling method. The best estimation was obtained by using the fluctuation-dissipation estimator with a pulling velocity of v = 0.25 nm/ns for the present study.  相似文献   

15.
Understanding molecular determinants of protein mechanical stability is important not only for elucidating how elastomeric proteins are designed and functioning in biological systems but also for designing protein building blocks with defined nanomechanical properties for constructing novel biomaterials. GB1 is a small α/β protein and exhibits significant mechanical stability. It is thought that the shear topology of GB1 plays an important role in determining its mechanical stability. Here, we combine single molecule atomic force microscopy and protein engineering techniques to investigate the effect of side chain reduction and hydrophobic core packing on the mechanical stability of GB1. We engineered seven point mutants and carried out mechanical ?-value analysis of the mechanical unfolding of GB1. We found that three mutations, which are across the surfaces of two subdomains that are to be sheared by the applied stretching force, in the hydrophobic core (F30L, Y45L, and F52L) result in significant decrease in mechanical unfolding force of GB1. The mechanical unfolding force of these mutants drop by 50-90 pN compared with wild-type GB1, which unfolds at around 180 pN at a pulling speed of 400 nm/s. These results indicate that hydrophobic core packing plays an important role in determining the mechanical stability of GB1 and suggest that optimizing hydrophobic interactions across the surfaces that are to be sheared will likely be an efficient method to enhance the mechanical stability of GB1 and GB1 homologues.  相似文献   

16.
The process during which a polymer translocates through a nanopore depends on many physical parameters and fundamental mechanisms. We propose a new one-dimensional lattice Monte Carlo algorithm that integrates various effects such as the entropic forces acting on the subchains that are outside the channel, the external forces that are pulling the polymer through the pore, and the frictional effects that involve the chain and its environment. Our novel approach allows us to study the polymer as a single Brownian particle diffusing while subjected to a position-dependent force that includes both the external driving forces and the internal entropic bias. Frictional effects outside and inside the pore are also considered. This Monte Carlo method is much more efficient than other simulation methods, and it can be used to obtain scaling laws for various polymer translocation regimes. In this first part, we derive the model and describe a subtle numerical approach that gives exact results for both the escape probability and the mean translocation time (and higher moments of its distribution). The scaling laws obtained from this model will be presented and discussed in the second part of this series.  相似文献   

17.
We investigate the problem of polymer translocation through a nanopore in the absence of an external driving force. To this end, we use the two-dimensional fluctuating bond model with single-segment Monte Carlo moves. To overcome the entropic barrier without artificial restrictions, we consider a polymer which is initially placed in the middle of the pore and study the escape time tau required for the polymer to completely exit the pore on either end. We find numerically that tau scales with the chain length N as tau approximately N(1+2nu), where nu is the Flory exponent. This is the same scaling as predicted for the translocation time of a polymer which passes through the nanopore in one direction only. We examine the interplay between the pore length L and the radius of gyration R(g). For LR(g), we find tau approximately N. In addition, we numerically find the scaling function describing crossover between short and long pores. We also show that tau has a minimum as a function of L for longer chains when the radius of gyration along the pore direction R( parallel) approximately L. Finally, we demonstrate that the stiffness of the polymer does not change the scaling behavior of translocation dynamics for single-segment dynamics.  相似文献   

18.
In this article, an implementation of steered molecular dynamics (SMD) in coarse‐grain UNited RESidue (UNRES) simulations package is presented. Two variants of SMD have been implemented: with a constant force and a constant velocity. The huge advantage of SMD implementation in the UNRES force field is that it allows to pull with the speed significantly lower than the accessible pulling speed in simulations with all‐atom representation of a system, with respect to a reasonable computational time. Therefore, obtaining pulling speed closer to those which appear in the atomic force spectroscopy is possible. The newly implemented method has been tested for behavior in a microcanonical run to verify the influence of introduction of artificial constrains on keeping total energy of the system. Moreover, as time dependent artificial force was introduced, the thermostat behavior was tested. The new method was also tested via unfolding of the Fn3 domain of human contactin 1 protein and the I27 titin domain. Obtained results were compared with Gø‐like force field, all‐atom force field, and experimental results. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
The motion of polymers with inhomogeneous structure through nanopores is discussed theoretically. Specifically, we consider the translocation dynamics of polymers consisting of double-stranded and single-stranded blocks. Since only the single-stranded chain can go through the nanopore the double-stranded segment has to unzip before the translocation. Utilizing a simple analytical model, translocation times are calculated explicitly for different polymer orientations, i.e., when the single-stranded block enters the pore first and when the double-stranded segment is a leading one. The dependence of the translocation dynamics on external fields, energy of interaction in the double-stranded segment, size of the polymer, and the fraction of double-stranded monomers is analyzed. It is found that the order of entrance into the pore has a significant effect on the translocation dynamics. The theoretical results are discussed using free-energy landscape arguments.  相似文献   

20.
We used single-channel electrical recordings and Langevin molecular dynamics simulations to explore the electrophoretic translocation of various beta-hairpin peptides across the staphylococcal alpha-hemolysin (alphaHL) protein pore at single-molecule resolution. The beta-hairpin peptides, which varied in their folding properties, corresponded to the C terminal residues of the B1 domain of protein G. The translocation time was strongly dependent on the electric force and was correlated with the folding features of the beta-hairpin peptides. Highly unfolded peptides entered the pore in an extended conformation, resulting in fast single-file translocation events. In contrast, the translocation of the folded beta-hairpin peptides occurred more slowly. In this case, the beta-hairpin peptides traversed the alphaHL pore in a misfolded or fully folded conformation. This study demonstrates that the interaction between a polypeptide and a beta-barrel protein pore is dependent on the folding features of the polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号