首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is demonstrated that a set of local orthonormal Hartree-Fock (HF) molecular orbitals can be obtained for both the occupied and virtual orbital spaces by minimizing powers of the orbital variance using the trust-region algorithm. For a power exponent equal to one, the Boys localization function is obtained. For increasing power exponents, the penalty for delocalized orbitals is increased and smaller maximum orbital spreads are encountered. Calculations on superbenzene, C(60), and a fragment of the titin protein show that for a power exponent equal to one, delocalized outlier orbitals may be encountered. These disappear when the exponent is larger than one. For a small penalty, the occupied orbitals are more local than the virtual ones. When the penalty is increased, the locality of the occupied and virtual orbitals becomes similar. In fact, when increasing the cardinal number for Dunning's correlation consistent basis sets, it is seen that for larger penalties, the virtual orbitals become more local than the occupied ones. We also show that the local virtual HF orbitals are significantly more local than the redundant projected atomic orbitals, which often have been used to span the virtual orbital space in local correlated wave function calculations. Our local molecular orbitals thus appear to be a good candidate for local correlation methods.  相似文献   

2.
We present here three new algorithms (one purely iterative and two DIIS-like [Direct Inversion in the Iteractive Subspace]) to compute maxima of homogeneous functions of orthogonal matrices. These algorithms revolve around the mathematical lemma that, given an invertible matrix A, the function f(U)=Tr(AU) has exactly one local (and global) maximum for U special orthogonal [i.e., UU(T)=1 and det(U)=1]. This is proved in the Appendix. One application of these algorithms is the computation of localized orbitals, including, for example, Boys and Edmiston-Ruedenberg (ER) orbitals. The Boys orbitals are defined as the set of orthonormal orbitals which, for a given vector space of orbitals, maximize the sum of the distances between orbital centers. The ER orbitals maximize total self-interaction energy. The algorithm presented here computes Boys orbitals roughly as fast as the traditional method (Jacobi sweeps), while, for large systems, it finds ER orbitals potentially much more quickly than traditional Jacobi sweeps. In fact, the required time for convergence of our algorithm scales quadratically in the region of a few hundred basis functions (though cubicly asymptotically), while Jacobi sweeps for the ER orbitals traditionally scale as the number of occupied orbitals to the fifth power. As an example of the utility of the method, we provide below the ER orbitals of nitrated and nitrosated benzene, and we discuss the chemical implications.  相似文献   

3.
We present a method for computing a basis of localized orthonormal orbitals (both occupied and virtual), in whose representation the Fock matrix is extremely diagonal dominant. The existence of these orbitals is shown empirically to be sufficient for achieving highly accurate second-order Moller-Plesset (MP2) energies, calculated according to Kapuy's method. This method (which we abbreviate KMP2) involves a different partitioning of the n-electron Hamiltonian and scales at most quadratically, with potential for linearity, in the number of electrons. As such, we believe the KMP2 algorithm presented here could be the basis of a viable approach to local-correlation calculations.  相似文献   

4.
We demonstrate an algorithm for computing local coupled-cluster doubles (LCCD) energies that form rigorously smooth potential-energy surfaces and which should be fast enough for application to large systems in the future. Like previous LCCD algorithms, our method solves iteratively for only a limited number of correlation amplitudes, treating the remaining amplitudes with second-order perturbation theory. However, by employing bump functions, our method smoothes the transition from iteratively solved amplitude to perturbation-treated amplitude, invoking the implicit function theorem to prove that our LCCD energy is an infinitely differentiable function of nuclear coordinates. We make no explicit amplitude domains nor do we rely on the existence of atom-centered, redundant orbitals in order to get smooth potential-energy curves. In fact, our algorithm employs only localized orthonormal occupied and virtual orbitals. Our approach should be applicable to many other electron correlation methods.  相似文献   

5.
A non‐iterative algorithm for the localization of molecular orbitals (MOs) from complete active space self consistent field (CASSCF) and for single‐determinantal wave functions on predefined moieties is given. The localized fragment orbitals can be used to analyze chemical reactions between fragments and also the binding of fragments in the product molecule with a fragments‐in‐molecules approach by using a valence bond expansion of the CASSCF wave function. The algorithm is an example of the orthogonal Procrustes problem, which is a matrix optimization problem using the singular value decomposition. It is based on the similarity of the set of MOs for the moieties to the localized MOs of the molecule; the similarity is expressed by overlap matrices between the original fragment MOs and the localized MOs. For CASSCF wave functions, localization is done independently in the space of occupied orbitals and active orbitals, whereas, the space of virtual orbitals is mostly uninteresting. Localization of Hartree–Fock or Kohn–Sham density functional theory orbitals is not straightforward; rather, it needs careful consideration, because in this case some virtual orbitals are needed but the space of virtual orbitals depends on the basis sets used and causes considerable problems due to the diffuse character of most virtual orbitals. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Using the three‐level energy optimization procedure combined with a refined version of the least‐change strategy for the orbitals—where an explicit localization is performed at the valence basis level—it is shown how to more efficiently determine a set of local Hartree–Fock orbitals. Further, a core–valence separation of the least‐change occupied orbital space is introduced. Numerical results comparing valence basis localized orbitals and canonical molecular orbitals as starting guesses for the full basis localization are presented. The results show that the localization of the occupied orbitals may be performed at a small computational cost if valence basis localized orbitals are used as a starting guess. For the unoccupied space, about half the number of iterations are required if valence localized orbitals are used as a starting guess compared to a canonical set of unoccupied Hartree–Fock orbitals. Different local minima may be obtained when different starting guesses are used. However, the different minima all correspond to orbitals with approximately the same locality. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
We use Cholesky decomposition of the density matrix in atomic orbital basis to define a new set of occupied molecular orbital coefficients. Analysis of the resulting orbitals ("Cholesky molecular orbitals") demonstrates their localized character inherited from the sparsity of the density matrix. Comparison with the results of traditional iterative localization schemes shows minor differences with respect to a number of suitable measures of locality, particularly the scaling with system size of orbital pair domains used in local correlation methods. The Cholesky procedure for generating orthonormal localized orbitals is noniterative and may be made linear scaling. Although our present implementation scales cubically, the algorithm is significantly faster than any of the conventional localization schemes. In addition, since this approach does not require starting orbitals, it will be useful in local correlation treatments on top of diagonalization-free Hartree-Fock optimization algorithms.  相似文献   

8.
A method is presented for expressing the occupied self-consistent-field (SCF) orbitals of a molecule exactly in terms of chemically deformed atomic minimal-basis-set orbitals that deviate as little as possible from free-atom SCF minimal-basis orbitals. The molecular orbitals referred to are the exact SCF orbitals, the free-atom orbitals referred to are the exact atomic SCF orbitals, and the formulation of the deformed "quasiatomic minimal-basis-sets" is independent of the calculational atomic orbital basis used. The resulting resolution of molecular orbitals in terms of quasiatomic minimal basis set orbitals is therefore intrinsic to the exact molecular wave functions. The deformations are analyzed in terms of interatomic contributions. The Mulliken population analysis is formulated in terms of the quasiatomic minimal-basis orbitals. In the virtual SCF orbital space the method leads to a quantitative ab initio formulation of the qualitative model of virtual valence orbitals, which are useful for calculating electron correlation and the interpretation of reactions. The method is applicable to Kohn-Sham density functional theory orbitals and is easily generalized to valence MCSCF orbitals.  相似文献   

9.
We explore using a pair natural orbital analysis of approximate first-order pair functions as means to truncate the space of both virtual and complementary auxiliary orbitals in the context of explicitly correlated F12 methods using localised occupied orbitals. We demonstrate that this offers an attractive procedure and that only 10-40 virtual orbitals per significant pair are required to obtain second-order valence correlation energies to within 1-2% of the basis set limit. Moreover, for this level of virtual truncation, only 10-40 complementary auxiliary orbitals per pair are required for an accurate resolution of the identity in the computation of the three- and four-electron integrals that arise in explicitly correlated methods.  相似文献   

10.
The convergence of the intrapair correlation energy for a localized internal orbital is investigated as the virtual subspace is enlarged. At variance with previous investigations of this kind, the virtual subspace is represented in atomic orbitals. This allows to define spatial relations between the orbitals involved. Typically, over 98% of the pair correlation energy is recovered by a small local basis set, consisting of the valence orbitals of the atoms with which the electron pair is associated. This opens the possibility of an efficient Cl procedure based on localized pairs.  相似文献   

11.
The computational considerations involved in calculating ordinary and rotatory intensities and electronic excitation energies in the random phase approximation (RPA ) are examined. We employ a localized orbital formulation in order to analyze the results in terms of local and charge-transfer excitations. Occupied orbitals are localized by the Foster–Boys procedure. The virtual space is transformed into a localized “valence” set that maximizes dipole strengths with the occupied counterparts, and a delocalized remainder. The two-electron integral transformation is performed with an efficient algorithm, based on Diercksen's, that generates only the particle–hole-type integrals required in the RPA . The lowest solutions of the RPA equations are obtained iteratively using a modification of the Davidson-Liu simultaneous vector expansion method. This allows the inclusion of the entire set of particle–hole states supported by a basis set of up to 102 orbitals. Calculations at this level give better excitation energies and intensities than SDCI methods, at substantial savings in computational effort. Comparative timings, computed results and analysis in terms of localized orbitals are given for planar and distorted ethylene using extended atomic orbital bases including diffuse functions. The results for planar ethylene are in excellent agreement with experiment.  相似文献   

12.
We present an orbital-optimized version of our orbital-specific-virtuals second-order M?ller-Plesset perturbation theory (OSV-MP2). The OSV model is a local correlation ansatz with a small basis of virtual functions for each occupied orbital. It is related to the Pulay-Saeb? approach, in which domains of virtual orbitals are drawn from a single set of projected atomic orbitals; but here the virtual functions associated with a particular occupied orbital are specifically tailored to the correlation effects in which that orbital participates. In this study, the shapes of the OSVs are optimized simultaneously with the OSV-MP2 amplitudes by minimizing the Hylleraas functional or approximations to it. It is found that optimized OSVs are considerably more accurate than the OSVs obtained through singular value decomposition of diagonal blocks of MP2 amplitudes, as used in our earlier work. Orbital-optimized OSV-MP2 recovers smooth potential energy surfaces regardless of the number of virtuals. Full optimization is still computationally demanding, but orbital optimization in a diagonal or Kapuy-type MP2 approximation provides an attractive scheme for determining accurate OSVs.  相似文献   

13.
The method, introduced in the preceding paper, for recasting molecular self-consistent field (SCF) or density functional theory (DFT) orbitals in terms of intrinsic minimal bases of quasiatomic orbitals, which differ only little from the optimal free-atom minimal-basis orbitals, is used to elucidate the bonding in several silicon clusters. The applications show that the quasiatomic orbitals deviate from the minimal-basis SCF orbitals of the free atoms by only very small deformations and that the latter arise mainly from bonded neighbor atoms. The Mulliken population analysis in terms of the quasiatomic minimal-basis orbitals leads to a quantum mechanical interpretation of small-ring strain in terms of antibonding encroachments of localized molecular-orbitals and identifies the origin of the bond-stretch isomerization in Si4H6. In the virtual SCF/DFT orbital space, the method places the qualitative notion of virtual valence orbitals on a firm basis and provides an unambiguous ab initio identification of the frontier orbitals.  相似文献   

14.
The optimized effective potential (OEP) equations are solved in a matrix representation using the orbital products of occupied and virtual orbitals for the representation of both the local potential and the response function. This results in a direct relationship between the matrix elements of local and nonlocal operators for the exchange-correlation potential. The effect of the truncation of the number of such products in the case of finite orbital basis sets on the OEP orbital and total energies and on the spectrum of eigenvalues of the response function is examined. Test calculations for Ar and Ne show that rather large AO basis sets are needed to obtain an accurate representation of the response function.  相似文献   

15.
A computational procedure for generating space-symmetry-adapted Bloch functions (BF) is presented. The case is discussed when BF are built from a basis of local functions (atomic orbitals [AOs]). The method, which is completely general in the sense that it applies to any space group and AOs of any quantum number, is based on the diagonalization of Dirac characters. For its implementation, it does not require as an input character tables or related data, since this information is automatically generated starting from the space group symbol and the AO basis set. Formal aspects of the method, not available in textbooks, are discussed. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 67: 299–309, 1998  相似文献   

16.
An efficient algorithm for energy gradients in valence bond theory with nonorthogonal orbitals is presented. A general Hartree-Fock-like expression for the Hamiltonian matrix element between valence bond (VB) determinants is derived by introducing a transition density matrix. Analytical expressions for the energy gradients with respect to the orbital coefficients are obtained explicitly, whose scaling for computational cost is m(4), where m is the number of basis functions, and is thus approximately the same as in HF method. Compared with other existing approaches, the present algorithm has lower scaling, and thus is much more efficient. Furthermore, the expression for the energy gradient with respect to the nuclear coordinates is also presented, and it provides an effective algorithm for the geometry optimization and the evaluation of various molecular properties in VB theory. Test applications show that our new algorithm runs faster than other methods.  相似文献   

17.
Summary A scalable integral direct, distributed-data parallel algorithm for four-index transformation is presented. The algorithm was implemented in the context of the second-order M?ller-Plesset (MP2) energy evaluation, yet it is easily adopted for other electron correlation methods, where only MO integrals with two indices in the virtual orbitals space are required. The major computational steps of the MP2 energy are the two-electron integral evaluationO(N 4) and transformation into the MO basisO(ON 4), whereN is the number of basis functions, andO the number of occupied orbitals, respectively. The associated maximal communication costs scale asO(n Σ O 2 V N), whereV andn Σ denote the number of virtual orbitals, and the number of symmetry-unique shells. The largest local and global memory requirements areO(N 2) for the MO coefficients andO(OV N) for the three-quarter transformed integrals, respectively. Several aspects of the implementation such as symmetry-treatment, integral prescreening, and the distribution of data and computational tasks are discussed. The parallel efficiency of the algorithm is demonstrated by calculations on the phenanthrene molecule, with 762 primitive Gaussians, contracted to 412 basis functions. The calculations were performed on an IBM SP2 with 48 nodes. The measured wall clock time on 48 nodes is less than 15 min for this calculation, and the speedup relative to single-node execution is estimated to 527. This superlinear speedup is a result of exploiting both the compute power and the aggregate memory of the parallel computer. The latter reduces the number of passes through the AO integral list, and hence the operation count of the calculation. The test calculations also show that the evaluation of the two-electron integrals dominates the calculation, despite the higher scaling of the transformation step.  相似文献   

18.
陈振华  张乾二  吴玮 《中国科学B辑》2009,39(11):1424-1429
本文通过引进一组正交的辅助非活性轨道和与它正交的辅助活性轨道,将价键理论方法中的冻核近似推广到轨道非正交的情形,得到了体系能量及其对非活性轨道的梯度解析表达式,简化了价键自洽场方法中非正交轨道能量梯度的计算.该方法的标度为(Na+1)m^4,其中Na和m分别是活性轨道和基函数的个数.分析表明,与现有的其他算法相比较,该方法具有更低的计算标度,因而计算效率更高.  相似文献   

19.
The authors provide a reformulation of the modern theory of polarization for one-dimensional stereoregular polymers, at the level of the single determinant Hartree-Fock and Kohn-Sham methods within a basis set of local orbitals. By starting with localization of one-electron orbitals, their approach naturally arrives to the Berry phases of Bloch orbitals. Then they describe a novel numerical algorithm for evaluation of longitudinal dipole moments, computationally more convenient than those presently implemented within the local basis periodic codes. This method is based on the straightforward evaluation of the usual direct space dipole matrix elements between local orbitals, as well as overlap matrices between wave functions at two neighboring k points of the reciprocal space mesh. The practical behavior of the algorithm and its convergence properties with respect to the k-point mesh density are illustrated in benchmark calculations for water chains and fluorinated trans-polyacetylene.  相似文献   

20.
Based on the Hylleraas functional form, the second and third orders of Møller-Plesset perturbation theory are reformulated in terms of arbitrary (e.g., localized) internal orbitals, and atomic orbitals in the virtual space. The results are strictly equivalent to the canonical formulation if no further approximations are introduced. The new formalism permits the extension of the local correlation method to Møller-Plesset theory. It also facilitates the treatment of weak pairs at a lower (e.g., second order) level of theory in CI and coupled cluster methods. Based on our formalism, an MP2 gradient algorithm is outlined which does not require the storage of derivative integrals, integrals with three external MO indices, and, using the method of Handy and Schaefer, the repeated solution of the coupled-perturbed SCF equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号