首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the laser induced fluorescence excitation (FE) and dispersed fluorescence (DF) spectra of a 1:1 mixed dimer between 7-azaindole (7AI) and 2-pyridone (2PY) measured in a supersonic free jet expansion of helium. Density functional theoretical calculation at the B3LYP/6-311++G** level has been performed for predictions of the dimer geometry and normal mode vibrational frequencies in the ground electronic state. A planar doubly hydrogen-bonded structure has been predicted to be the most preferred geometry of the dimer. In the FE spectrum, sharp vibronic bands are observed only for excitation of the 2PY moiety. A large number of low-frequency vibronic bands show up in both the FE and DF spectra, and those bands have been assigned to in-plane hydrogen bond vibrations of the dimer. Spectral analyses reveal Duschinsky-type mixing among those modes in the excited state. No distinct vibronic band structure in the FE spectrum was observed corresponding to excitations of the 7AI moiety, and the observation has been explained in terms of nonradiative electronic relaxation routes involving the 2PY moiety.  相似文献   

2.
Laser-induced dispersed fluorescence spectra of benzoic acid dimer in the cold environment of supersonic jet expansion have been reinvestigated with improved spectral resolution of measurements. The spectra are analyzed with the aid of the normal mode vibrations of the dimer calculated by the ab initio quantum chemistry method at the DFT/B3LYP/6-311+G(*) (*) level of theory. The analysis reveals that the low-frequency intermolecular hydrogen bond modes are mixed extensively with the carboxyl as well as aromatic ring vibrations upon electronic excitation. The mode mixing is manifested as the complete loss of mirror symmetry relation between the fluorescence excitation and dispersed fluorescence spectra of the S(1) origin, and appearance of large number of cross-sequence transitions when the DF spectra are measured by exciting the low-energy vibrations near the S(1) origin. The cross-sequence bands are found in all the cases to be the combinations of two nontotally symmetric fundamentals consisting of one of the intermolecular hydrogen bond modes and the other from the aromatic ring and carboxyl group vibrations. The implications of this mode mixing on the excited state dynamics of the dimer are discussed.  相似文献   

3.
The vibronically resolved electronic spectra for S(1)<-->S(0) transitions of a mixed dimer between 2-pyridone (2PY) and formamide have been measured in a supersonic free jet expansion using laser-induced fluorescence spectroscopy. Quantum chemistry method at different levels of theory has been used to optimize the geometries of the dimer for the S(0) and S(1) electronic states and also to calculate the normal vibrational modes. Assignments for the vibronic bands observed in the dispersed fluorescence spectrum of the 0(0) (0) band have been suggested with the aid of the ground state frequencies calculated by density functional theoretical method. Spectral analysis reveals that electronic excitation causes extensive mixing of the low-frequency intermolecular vibrational modes of the dimer with some of the intramolecular modes of the 2PY moiety. This spectral behavior is consistent with the complete active space self-consistent field theoretical prediction that with respect to a number of geometrical parameters the dimer geometry in S(1) is significantly distorted from the geometry of the S(0) state.  相似文献   

4.
We have presented in this paper the laser-induced fluorescence excitation and resolved fluorescence spectra of five 1:1 hydrogen-bonded complexes of 2-pyridone (2PY) with formic acid (FA), acetic acid (AA), propanoic acid (PA), formamide (FM), and acetamide (AM). The resolved fluorescence spectra, measured following excitation to different single vibronic levels of the dimers indicate that the intermolecular hydrogen bond vibrations undergo mixing with a number of intramolecular modes of the 2PY moiety in the excited state. A comparison of the emission spectral features of these dimers clearly indicates that the methyl groups belonging to the AA and AM moieties spectacularly accelerate the vibrational energy redistribution (IVR) in the 2PY moiety. On the other hand, although the molecular size of PA is bigger than AA, the spectral features of the 2PY-PA dimer bear signatures of a slower IVR rate compared to those of 2PY-AA. We propose that hyperconjugation of the methyl group with the cyclic hydrogen-bonded network involving AA and AM is responsible for the observed phenomenon.  相似文献   

5.
Two conformational isomers of 3-fluorobenzoic acid dimer (3-FBA(2)) have been identified in a supersonic jet expansion by use of laser-induced fluorescence excitation (FE), UV-UV hole-burning, and dispersed fluorescence (DF) spectroscopic methods. In the FE spectrum, the S(1) origins of the two isomeric species appear at a frequency gap of only 24 cm(-1), and the vibronic intensities of the redshifted dimer (dimer I) are about two times weaker than those of dimer II. However, ab initio quantum chemistry calculations at the MP2/6-31G(**) level of theory predict that all the isomeric species of 3-FBA(2) have almost the same binding energy (approximately 17 kcal/mol) in the ground state. Furthermore, unlike benzoic acid dimer, the present system shows intense activity for a low-frequency mode in both the FE and DF spectra. With the aid of DFT (B3LYP/6-311G(**)) predicted normal mode frequencies, we have assigned the mode to the in-plane gear (cogwheel) vibration of the cyclic hydrogen-bonded frame of the dimer. The Franck-Condon profiles for vibronic excitation of the mode indicate that the distortion of the cyclic hydrogen bond frame as a result of S(1)<--S(0) excitation is larger for dimer I than dimer II. Moreover, the fluorescence lifetime at the S(1) zero-point level of the former is also significantly smaller than the latter. Using the predictions of configuration interaction singles calculations, we have proposed that the spectral and dynamical differences between the two isomeric species observed in this study are manifestations of the different characteristics of their S(1) surfaces. By measuring FE, DF, and hole-burning spectra of a mixed dimer between 3-fluobenzoic acid and benzoic acid we have shown that the isomeric features in the homodimer spectra are due to two locally excited rotamers of the 3-fluorobenzoic acid moiety.  相似文献   

6.
Theoretical model for vibrational interactions in the hydrogen-bonded dimer of benzoic acid is presented. The model takes into account anharmonic-type couplings between the high-frequency O-H and the low-frequency O[cdots, three dots, centered]O stretching vibrations in two hydrogen bonds, resonance interactions (Davydov coupling) between two hydrogen bonds in the dimer, and Fermi resonance between the O-H stretching fundamental and the first overtone of the O-H in-plane bending vibrations. The vibrational Hamiltonians and selection rules for the C(2h) geometry in the S(0) state and for the C(s) in-plane bent geometry in the S(1) state of the dimer are derived. The model is used for theoretical simulation of the O-H stretching IR absorption bands of benzoic acid dimers in the gas phase in the electronic ground and first excited singlet states. Ab initio CIS and CIS(D)6-311++G(d,p) calculations have been performed to determine geometry, frequencies, and excited state energies of benzoic acid dimer in the S(1) state.  相似文献   

7.
In a discharged supersonic jet of acetonitrile and carbon disulfide, we have for the first time observed an electronic transition of the NC(3)S radical using laser-induced fluorescence (LIF) spectroscopy. A progression originating from the C-S stretching mode of the upper electronic state appears in the excitation spectrum. Each band of the progression has a polyad structure due to anharmonic resonances with even overtones of bending modes. Rotationally resolved spectra have been observed by high-resolution laser scans, and the electronic transition is assigned to A 2Pii-X 2Pii. For the vibronic origin band, the position and the effective rotational constant of the upper level have been determined to be 21 553.874(1) and 0.046 689(4) cm(-1), respectively. The dispersed fluorescence spectrum from the zero vibrational level of A 2Pi3/2 has also been observed; its vibrational structure is similar to that of the LIF excitation spectrum, showing a prominent C-S stretching progression with polyad structures. The vibrational frequencies of the C-S stretching mode in the ground and excited electronic states are determined to be 550 and 520 cm(-1), respectively. Fluorescence decay profiles have been measured for several vibronic levels of the A state.  相似文献   

8.
Laser-induced fluorescence (LIF) and laser-excited dispersed fluorescence (LEDF) spectra of the cycloheptatrienyl (tropyl) radical C7H7 have been observed under supersonic jet-cooling conditions. Assignment of the LIF excitation spectrum yields detailed information about the A-state vibronic structure. The LEDF emission was collected by pumping different vibronic bands of the A 2E"3<--X 2E"2 electronic spectrum. Analysis of the LEDF spectra yields valuable information about the vibronic levels of the X 2E"2 state. The X- and A-state vibronic structures characterize the Jahn-Teller distortion of the respective potential energy surfaces. A thorough analysis reveals observable Jahn-Teller activity in three of the four e'3 modes for the X 2E"2 state and two of the three e'1 modes for the A 2E"3 state and provides values for their deperturbed vibrational frequencies as well as linear Jahn-Teller coupling constants. The molecular parameters characterizing the Jahn-Teller interaction in the X and A states of C7H7 are compared to theoretical results and to those previously obtained for C5H5 and C6H6+.  相似文献   

9.
A detailed study of the S1((1)B2)-S0((1)A1) electronic transition of jet-cooled fluorobenzene has been carried out using laser-induced fluorescence and dispersed fluorescence (DF) spectroscopies. Analysis of over 40 single vibronic level DF spectra resulted in the assignment of 16 fundamental frequencies in the excited electronic state. Progressions in totally symmetric modes, particularly in the ring-breathing mode nu9, feature in both types of fluorescence spectrum. There is also significant activity in non-totally-symmetric modes, with activity in Franck-Condon (FC)-allowed overtones, FC-forbidden combinations induced by Duschinsky mixing, and symmetry-forbidden transitions induced by the same Herzberg-Teller vibronic coupling mechanism that induces the benzene S1-S0 transition. Fermi resonances (FRs) are extensive throughout the spectrum, especially in the important FC-active a1 modes. A consequence of these extensive FRs is that several important previous assignments are shown to be incorrect and have been reassigned here. Ab initio and density functional theory calculations have also been performed to support the experimental assignments.  相似文献   

10.
In this paper, the vibronic structure of a dimer system is studied both theoretically and numerically. To construct adiabatic potential surfaces and electronic and vibrational wave functions for a dimer system, the adiabatic approximation is applied to two identical molecules, each of which has two electronic states with one vibrational mode. In this scheme, the excitonic splitting results not only from the electronic coupling of two molecules, but also from the vibronic coupling in each molecule. By using the resulting wavefunctions and the corresponding energies, the absorption and fluorescence spectra are studied. The effect of temperature on these spectra is also studied.  相似文献   

11.
Laser-induced fluorescence excitation and resolved fluorescence spectra following excitations of the single vibronic levels (SVL) of p-vinyltoluene (p-VT) and p-vinylfluorobenzene (p-VFB) have been measured in a seeded supersonic free-jet expansion. A complete vibronic assignment of the fluorescence spectrum measured following excitation of the 0(0)0-band of p-VT has been presented. Normal vibrational modes in the S0 and S1 states of the molecule have been calculated by CASSCF method, and the correlation between the two set of modes is made by expressing the excited-state normal modes in terms of those of the ground state. The calculations predict that in the excited state methyl and vinyl torsional motions of p-VT are extensively mixed with many of the out-of-plane modes of the aromatic ring. Our resolved fluorescence spectral data measured following SVL excitations essentially agree with such predictions. In the excited state, the molecule exhibits a dramatically low threshold for the rotor-induced IVR in a supersonic jet expansion. Several mechanisms have been discussed to explain the phenomenon.  相似文献   

12.
Theoretical calculations on the molecular geometry and the vibrational spectrum of 4-hydroxybenzoic acid were carried out by the Density Functional Theory (DFT/B3LYP) method. In addition, IR and Raman spectra of the 4-hydroxybenzoic acid in solid phase were newly recorded using them in conjunction the experimental and theoretical data (including SQM calculations), a vibrational analysis of this molecular specie was accomplished and a reassignment of the normal modes corresponding to some spectral bands was proposed. The geometries of monomers and dimers in gas phase were optimized using the DFT B3LYP method with the 6-31G*, D95** and 6-311++G** basis sets. Also, both the vibrational spectra recorded and the results of the theoretical calculations show the presence of one stable conformer for the 4-hydroxybenzoic acid cyclic dimer. The B3LYP/6-31G* method was used to study the structure for cyclic dimer of 4-hydroxybenzoic acid and for a complete assignment our results were compared with results of the cyclic dimer of benzoic acid. A scaled quantum mechanical analysis was carried out to yield the best set of harmonic force constants. The formation of the hydrogen bond was investigated in terms of the charge density by the AIM program and by the NBO calculations.  相似文献   

13.
14.
Infrared spectra of the NH stretching vibrations of (NH3)n clusters (n = 2-4) have been obtained using the helium droplet isolation technique and first principles electronic structure anharmonic calculations. The measured spectra exhibit well-resolved bands, which have been assigned to the nu1, nu3, and 2nu4 modes of the ammonia fragments in the clusters. The formation of a hydrogen bond in ammonia dimers leads to an increase of the infrared intensity by about a factor of 4. In the larger clusters the infrared intensity per hydrogen bond is close to that found in dimers and approaches the value in the NH3 crystal. The intensity of the 2nu4 overtone band in the trimer and tetramer increases by a factor of 10 relative to that in the monomer and dimer, and is comparable to the intensity of the nu1 and nu3 fundamental bands in larger clusters. This indicates the onset of the strong anharmonic coupling of the 2nu4 and nu1 modes in larger clusters. The experimental assignments are compared to the ones obtained from first principles electronic structure anharmonic calculations for the dimer and trimer clusters. The anharmonic calculations were performed at the M?ller-Plesset (MP2) level of electronic structure theory and were based on a second-order perturbative evaluation of rovibrational parameters and their effects on the vibrational spectra and average structures. In general, there is excellent (<20 cm(-1)) agreement between the experimentally measured band origins for the N-H stretching frequencies and the calculated anharmonic vibrational frequencies. However, the calculations were found to overestimate the infrared intensities in clusters by about a factor of 4.  相似文献   

15.
Fine-structure fluorescence spectra and i.r. spectra of the model compound chlorophyll-Zn-octaethylchlorin (Zn OEC), and its three deuterated derivatives at meso-positions and Zn OEC-15N4 have been obtained. Polarization measurements for individual zero-phonon lines show that in the vibronic spectra of the above compounds the totally symmetric vibrations are mainly active. A joint analysis of the experimental data and calculation results of normal vibrations has served as a basis for the interpretation of the spectra obtained as well as resonance Raman spectra. It is pointed out that the vibrations of ethyl substituents largely form a vibrational structure of the vibronic Zn OEC spectrum. An assignment of some lines in a fine-structure spectrum of chlorophyll a is discussed.  相似文献   

16.
Polarized IR spectra of four carboxylic acids have been recorded using the stretched polymer method. Benzoic, propanoic and propynoic acids form cyclic dimers in polyethylene, while formic acid forms an α type polymer. The transition moment directions of 23 vibrations of benzoic acid dimer are given and the carboxylic ring in-plane vibrations of the studied acids are discussed in the light of the obtained results.  相似文献   

17.
The solid phase FTIR and FT-Raman spectra of 4-butyl benzoic acid (4-BBA) have been recorded in the regions 400-4000 and 50-4000cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for monomer and dimer by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. (13)C and (1)H NMR spectra were recorded and (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in the region 200-400nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule.  相似文献   

18.
Ultrafast vibrational dynamics of cyclic hydrogen bonded dimers and the underlying microscopic interactions are studied in temporally and spectrally resolved pump-probe experiments with 100 fs time resolution. Femtosecond excitation of the O-H and/or O-D stretching mode gives rise to pronounced changes of the O-H/O-D stretching absorption displaying both rate-like kinetic and oscillatory components. A lifetime of 200 fs is measured for the v=1 state of the O-H stretching oscillator. The strong oscillatory absorption changes are due to impulsively driven coherent wave packet motions along several low-frequency modes of the dimer between 50 and 170 cm(-1). Such wave packets generated via coherent excitation of the high-frequency O-H/O-D stretching oscillators represent a clear manifestation of the anharmonic coupling of low- and high-frequency modes. The underdamped low-frequency motions dephase on a time scale of 1-2 ps. Calculations of the vibrational potential energy surface based on density functional theory give the frequencies, anharmonic couplings, and microscopic elongations of the low-frequency modes, among them intermolecular hydrogen bond vibrations. Oscillations due to the excitonic coupling between the two O-H or O-D stretching oscillators are absent as is independently confirmed by experiments on mixed dimers with uncoupled O-H and O-D stretching oscillators.  相似文献   

19.
Laser-induced fluorescence (LIF) excitation spectra of the B-X (2)A(") electronic transition of the CH(2)CHS radical, which is the sulfur analog of the vinoxy (CH(2)CHO) radical, were observed under room temperature and jet-cooled conditions. The LIF excitation spectra show very poor vibronic structures, since the fluorescence quantum yields of the upper vibronic levels are too small to detect fluorescence, except for the vibrationless level in the B state. A dispersed fluorescence spectrum of jet-cooled CH(2)CHS from the vibrationless level of the B state was also observed, and vibrational frequencies in the X state were determined. Precise rotational and spin-rotation constants in the ground vibronic level of the radical were determined from pure rotational spectroscopy using a Fourier-transform microwave (FTMW) spectrometer and a FTMW-millimeter wave double-resonance technique [Y. Sumiyoshi et al., J. Chem. Phys. 123, 054324 (2005)]. The rotationally resolved LIF excitation spectrum for the vibronic origin band of the jet-cooled CH(2)CHS radical was analyzed using the ground state molecular constants determined from pure rotational spectroscopy. Determined molecular constants for the upper and lower electronic states agree well with results of ab initio calculations.  相似文献   

20.
We report studies of supersonically cooled p-amino benzoic acid using one-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. With the aid of ab initio and density functional calculations, vibrational modes of the first electronically excited state S(1) of the neutral species and those of the cation have been assigned, and the adiabatic ionization potential has been determined to be 64 540+/-5 cm(-1). A common pattern involving the activation of five vibrational modes of the cation is recognizable among all the ZEKE spectra. A propensity of Deltav=0, where v is the vibrational quantum number of the intermediate vibronic state from S(1), is confirmed, and the origin of this behavior is discussed in the context of electron back donation from the two substituents in the excited state and in the cationic state. A puzzling observation is the doublet splitting of 37 cm(-1) in the ZEKE spectrum obtained via the inversion mode of the S(1) state. This splitting cannot be explained from our density functional calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号