首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer gel electrolytes based on poly(acrylic acid)-poly(ethylene glycol) (PAA–PEG) hybrid have been prepared and applied to developed quasi-solid-state dye-sensitized solar cells (DSCs). PAA–PEG hybrid was synthesized by polymerization reaction. Quasi-solid-state DSCs were fabricated with synthesized PAA–PEG electrolyte. The effects of alkali iodides LiI, KI, and I2 concentrations on liquid electrolyte absorbency and ionic conductivity of PAA–PEG were investigated. The evolution of the solar cell parameters with polymer gel electrolyte compositions was revealed. DSCs based on PAA–PEG with optimized KI/I2 concentrations showed better performances than those with optimized LiI/I2 concentrations. The electrochemical impedance spectroscopy technique was employed to examine the electron lifetime in the TiO2 electrode and quantify charge transfer resistances at the TiO2/dye/electrolyte interface and the counter electrode in the solar cells based on the PAA–PEG hybrid gels. A maximum conversion efficiency of 4.96% was obtained for DSCs using KI based quasi-solid electrolyte under 100 mW cm−2. Our work suggests that KI can be the promising alkali metal iodide for improving the performance of PAA–PEG hybrid gel DSCs.  相似文献   

2.
Interface modification on the TiO2/dye/electrolyte interface of dye-sensitized solar cells (DSCs) is one of the most effective approaches to suppress the charge recombination, improve electron injection and transportation, and thus ameliorate the conversion efficiency and stability of DSCs. Conventional research focusing on the photoanodes interface modification before sensitization in dye-sensitized solar cells has been carried out and reviewed. However, recent studies showed that post-modification after sensitization of the TiO2 electrode also plays a significant role on the TiO2/dye/electrolyte interface. This post-modification using the immersing method could deprotonate dye molecules, prohibit the dye aggregation and retard the recombination reaction. As a result, it has great influence on the devices’ photovoltaic performance. This interface modification could also provide an approach to broaden the response of the solar spectrum by introducing an alternative assembling structure. An in-situ meaning of using a co-adsorbent is employed to modify the interface in the DSCs, which could retard the aggregation of the dye molecules and enhance the conversion efficiency. In addition, electrolyte additives can be used to modify the TiO2/dye/electrolyte interface through some unique mechanisms. Based on the background of interface modification of photoanodes before sensitization, this review introduces various interface modifications after sensitization of dye-sensitized solar cells and their mechanisms.  相似文献   

3.
The use of renewable energy is essential for the future of the Earth, and solar photons are the ultimate source of energy to satisfy the ever-increasing global energy demands. Photoconversion using dye-sensitized solar cells (DSCs) is becoming an established technology to contribute to the sustainable energy market, and among state-of-the art DSCs are those which rely on ruthenium(ii) sensitizers and the triiodide/iodide (I3/I) redox mediator. Ruthenium is a critical raw material, and in this review, we focus on the use of coordination complexes of the more abundant first row d-block metals, in particular copper, iron and zinc, as dyes in DSCs. A major challenge in these DSCs is an enhancement of their photoconversion efficiencies (PCEs) which currently lag significantly behind those containing ruthenium-based dyes. The redox mediator in a DSC is responsible for regenerating the ground state of the dye. Although the I3/I couple has become an established redox shuttle, it has disadvantages: its redox potential limits the values of the open-circuit voltage (VOC) in the DSC and its use creates a corrosive chemical environment within the DSC which impacts upon the long-term stability of the cells. First row d-block metal coordination compounds, especially those containing cobalt, and copper, have come to the fore in the development of alternative redox mediators and we detail the progress in this field over the last decade, with particular attention to Cu2+/Cu+ redox mediators which, when coupled with appropriate dyes, have achieved VOC values in excess of 1000 mV. We also draw attention to aspects of the recyclability of DSCs.

The progress over the last decade in the applications of first row d-block metal, especially iron, cobalt, copper and zinc, coordination compounds in redox shuttles and sensitizers in dye-sensitized solar cells is reviewed.  相似文献   

4.
We prepared a new organic electrolyte by the reaction among acetylacetone, pyridine and iodine in 3-methoxypropionitrile. The UV–Visible spectra, conductivity measurement and ESI mass spectra were used to study this electrolyte. It was suggested that the quaternization reaction of pyridine took place in this electrolyte solution and two kinds of pyridinium iodide were formed. The efficiency of dye-sensitized solar cells (DSCs) using this electrolyte reaches 6.72%, which is higher than that of DSCs using LiI electrolyte and methylpropylimidazolium iodide electrolyte. It implies that these pyridinium iodides are effective alternative component of iodide for the electrolytes of DSCs. As this organic iodide electrolyte was in situ synthesized based on iodine instead of alkyl iodide, it will be cost-effective and facilitative for the production of DSCs.  相似文献   

5.
采用水热法合成四硫化三钴(Co3S4)催化材料,并利用球磨和喷涂技术将其制备成对电极,结合新型无碘电解液Co2+/Co3+用于染料敏化太阳电池(dye-sensitized solar cells,简称DSCs)来研究其光电性能。测试结果显示,基于Co3S4对电极,DSCs的能量转化效率(power conversion efficiency,简称PCE)只有6.06%,远远低于Pt对电极(8.05%)。为了提高Co3S4的催化能力,采用静电纺丝技术制备碳纳米纤维(electrospun carbon nanofibers,简称ECs),结合水热法制备出不同负载量的碳纳米纤维负载四硫化三钴(Co3S4/ECs)复合催化材料用于对电极,结果表明,Co3S4/ECs的PCE最高可达(8.22±0.08)%,优于Pt对电极。  相似文献   

6.
To promote the photoelectric conversion efficiency of solar cell, N-doped TiO2 particles are introduced as working electrodes in dye-sensitized solar cells. The N-doped TiO2 particles (N–en–TiO2) are easily synthesized from [Ti(NH2CH2CH2NH2) x (H2O) y ]zOH (aquaethylenediaminetitanium(IV) hydroxide) complex using a modified sol–gel process. The produced N–en–TiO2 particles show rice-shapes of 25–50 nm and their band-gaps become to be shorter than that of TiO2. The N–en–TiO2 particles are applied to working electrode layers in dye-sensitized solar cells, and on comparing the performances of pure TiO2 and N–en2–TiO2–DSCs, the latter shows good performance with a solar energy conversion efficiency of ~5.54 % versus the former of 4.21 % respectively with a notable photocurrent enhancement. Particularly, the N–en2–TiO2–DSCs exhibit relatively low charge transfer resistance at counter electrode and electron transfer resistance from dye/TiO2/photoanode, slower recombination times, faster electron transport times, and higher electron diffusion coefficients than non-doped TiO2–DSCs.  相似文献   

7.
A novel type of random copolymer comprised of a polymerized ionic liquid, poly(1-((4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII), and amorphous rubbery poly(oxyethylene methacrylate) (POEM) was synthesized and employed as a solid electrolyte in an I2-free dye-sensitized solar cell (DSSC). The copolymer electrolytes deeply infiltrated into the nanopores of mesoporous TiO2 films, resulting in improved interfacial contact of electrode/electrolyte. The glass transition temperature (T g) of the PEBII–POEM (?23 °C) was lower than that of PEBII homopolymer (?4 °C), indicating greater chain flexibility in the former. However, the DSSC efficiency of PEBII–POEM (4.5 % at 100 mW/cm2) was lower than that of PEBII (5.9 %), indicating that ion concentration is more important than chain flexibility. Interestingly, upon the introduction of ionic liquid, i.e., 1-methyl-3 propylimidazolium iodide, the efficiency of PEBII remained almost constant (5.8 %), whereas that of PEBII–POEM was significantly improved up to 7.0 % due to increased I? ion concentration, which is one of the highest values for I2-free DSSCs.  相似文献   

8.
采用水热法合成四硫化三钴(Co_3S_4)催化材料,并利用球磨和喷涂技术将其制备成对电极,结合新型无碘电解液Co~(2+)/Co~(3+)用于染料敏化太阳电池(dye-sensitized solar cells,简称DSCs)来研究其光电性能。测试结果显示,基于Co_3S_4对电极,DSCs的能量转化效率(power conversion efficiency,简称PCE)只有6.06%,远远低于Pt对电极(8.05%)。为了提高Co_3S_4的催化能力,采用静电纺丝技术制备碳纳米纤维(electrospun carbon nanofibers,简称ECs),结合水热法制备出不同负载量的碳纳米纤维负载四硫化三钴(Co_3S_4/ECs)复合催化材料用于对电极,结果表明,Co_3S_4/ECs的PCE最高可达(8.22±0.08)%,优于Pt对电极。  相似文献   

9.
The effect of a gel polymer electrolyte (GPE) as the redox electrolyte used in dye-sensitized solar cells was studied. A GPE solution consisting of 0.5?M sodium iodide, 0.05?M iodine, and ethylene carbonate/propylene carbonate (1:1 w/w) binary solvents was mixed with increasing amounts of styrene–acrylonitrile (SAN). Bulk conductivity measurements show a decreasing trend from 4.54 to 0.83×10?3?S?cm?1 with increasing SAN content. The GPE exhibits Newtonian-like behavior and its viscosity increases from 0.041 to 1.093?Pa?s with increasing SAN content. A balance between conductivity (1.3?×?10?3?S?cm?1) and viscosity (1.4?Pa?s) is observed at 19?wt.% SAN. Fourier transform infrared spectroscopy detects elevated ring torsion at 706?cm?1 upon the addition of SAN into the liquid electrolyte. This indicates that SAN does not bond with the liquid electrolyte. Finally, the potential stability window of 19?wt.% SAN, which ranges from ?1.68 to 1.38?V, proves its applicability in solar cells.  相似文献   

10.
Two organic dyes XS51 and XS52 derivated from triarylamine and indoline are synthesized for dye-sensitized solar cells (DSCs) employing cobalt and iodine redox shuttles. The effects of dye structure upon the photophysical, electro-chemical characteristics and cell performance are investigated. XS51 with four hexyloxyl groups on triarylamine performs better steric hindrance and an improvement of photovoltage. XS52 provides higher short-circuit photocurrent density due to the strong electron-donating capability of indoline unit. The results from the redox electrolyte on cell performances indicate that the synthesized dyes are more suitable for tris(1,10-phenanthroline)cobalt(II/III) redox couple than I?/I3? redox couple in assembling DSCs. Application of XS52 in the cobalt electrolyte yields a DSC with an overall power conversion efficiency of 6.58% under AM 1.5 (100 mW/cm2) irradiation.  相似文献   

11.
Using poly(acrylonitrile-co-styrene) as polymer host, 1,2-propanediol carbonate, dimethyl carbonate and ethylene carbonate as mixture solvent, N-methyl-quinoline iodide and iodine as the source of I/I3 , a novel polymer gel electrolyte with ionic conductivity of 5.12 × 10−3 S· cm−1 at 25°C was prepared by sol-gel and hydrothermal methods. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell was fabricated. The solar cell possess better long-term stability and light-to-electrical energy conversion efficiency of 4.04% under irradiation of 100 mW· cm−2. The influences of polymer host, solvent, N-methyl-quinoline iodide and temperature on ionic conductivity of the polymer gel electrolyte and the performance of the dye-sensitized solar cell was discussed.  相似文献   

12.
13.
采用季铵化反应合成了1-丁基-3-甲基咪唑碘([Bmim]I).以此制备了DSCs用液体电解质.通过对比不同浓度的1-丁基-3-甲基咪唑碘、碘化钾、碘,研究其对电池性能的影响.经过优化后,当cIL=0.9 mol·L-1、cKI=0.5 mol·L-1、cI2=0.12 mol·L-1时,所组装的离子液体DSCs在AM1.5,100 mW·cm-2下,DSCs的短路电流密度为15.97 mA·cm-2、开路电压为0.71 V、填充因子为0.55、光电转换效率可达6.34%.  相似文献   

14.
染料敏化纳米薄膜太阳电池中DMPII浓度的优化   总被引:5,自引:0,他引:5  
利用超微铂电极和循环伏安法及电化学阻抗谱研究了在1,2-二甲基-3-丙基咪唑碘(DMPII)的3-甲氧基丙腈(MePN)溶液中I3和I的氧化还原行为,并对比了由不同浓度的I2和DMPII组成的电解质溶液,其染料敏化纳米薄膜太阳电池(DSCs)的光伏性能. 发现以MePN为溶剂,含1.0 mol•dm-3 DMPII、0.12 mol•dm-3 I2、0.10 mol•dm-3 LiI和0.50 mol•dm-3 4-叔丁基吡啶的电解质溶液,其DSCs的短路光电流密度为16.67 mA•cm-3、开路电压为0.69 V、填充因子为0.70、光电转换效率达8.08%.  相似文献   

15.
提出了利用p-π共轭效应设计离子液体的方法, p-π共轭效应可以有效分散阴离子的负电荷, 降低离子液体中阴阳离子之间的库仑引力, 以得到低粘度的离子液体. 所设计的离子液体为1-乙基-3-甲基咪唑苯甲酸(EMIB)和1-乙基-3-甲基咪唑异烟酸(EMIIN) (它们的阴离子中羧酸根和芳环为p-π共轭结构), 这两种离子液体都达到了较低的粘度(EMIB为42 mPa·s, EMIIN为27 mPa·s). 进一步将这两种离子液体做成电解质, 应用在染料敏化太阳能电池中, 通过优化电解质的组成, EMIB基电解质达到了1.43 mS·cm-1的电导率和1.45×10-7cm2·s-1的I3?的扩散系数, 而EMIIN基电解质的电导率和I3?扩散系数分别为1.63 mS·cm-1和2.01×10-7 cm2·s-1,后者电导性能的提高主要和EMIIN粘度较低有关系. 进一步将这两种电解质组装成电池, 在300 W·m-2的光强下测得EMIB基电池和EMIIN基电池的效率分别为2.85%和4.30%.  相似文献   

16.
In this paper, by introducing [1,2,5]thiadiazolo[3,4-c]pyridine (PT) as an auxiliary acceptor into the molecular design of organic sensitizers, we have synthesized four new dyes (PT1PT4) for dye-sensitized solar cells (DSSCs) with triphenylamine or N,N-diphenylthiophen-2-amine as the donor units and thiophene or benzene as the π-bridges, respectively. All the structures, optical and electrochemical properties were fully characterized. Nanocrystalline TiO2 dye-sensitized solar cells were also fabricated using these dyes. Among them, PT2-based DSSCs showed the highest overall conversion efficiency of 6.11% with Voc=668 mV, Jsc=12.61 mA cm−2 and a fill factor (FF)=0.74 after a chenodeoxycholic acid (CDCA) treatment under standard illumination condition (100 mW cm−2 simulated AM 1.5 solar light).  相似文献   

17.
This paper reports on the application of cornstalks-derived high-surface-area microporous carbon (MC) as the efficient photocathode of dye-sensitized solar cells (DSCs). The photocathode, which contains MC active material, Vulcan XC–72 carbon black conductive agent, and TiO2 binder, was obtained by a doctor blade method. Electronic impedance spectroscopy (EIS) of the MC film uniformly coated on fluorine doped SnO2 (FTO) glass displayed a low charge-transfer resistance of 1.32 Ω cm2. Cyclic voltammetry (CV) analysis of the as-prepared MC film exhibited excellent catalytic activity for I3?/I? redox reactions. The DSCs assembled with the MC film photocathode presented a short-circuit photocurrent density (Jsc) of 14.8 mA cm?2, an open-circuit photovoltage (Voc) of 798 mV, and a fill factor (FF) of 62.3%, corresponding to an overall conversion efficiency of 7.36% under AM 1.5 irradiation (100 mW cm?2), which is comparable to that of DSCs with Pt photocathode obtained by conventional thermal decomposition.  相似文献   

18.
Novel iridium-based sensitizers Iridium(III) bis[2-phenylpyridinato-N,C2′]-5-carboxylpicolinate) (Ir1), Iridium(III) bis[2-(naphthalen-1-yl) pyridinato-N,C2′]-5-carboxyl-picolinate) (Ir2), Iridium(III) bis[2-phenylpyridinato-N,C2′]-4,4′-(dicarboxylicacid)-2,2′-bipyridine (Ir3) were synthesized for sensitization of mesoscopic titanium dioxide injection solar cells. By changing the ligand, the absorption spectra can be extended and molar extinction coefficient was enhanced. The dye-sensitized nanocrystalline TiO2 solar cells (DSSCs) based on dye Ir3 showed the best photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 85%, a short-circuit photocurrent density (Jsc) of 9.59 mA cm−2, an open-circuit photovoltage (Voc) of 0.552 V, and a fill factor (ff) of 0.54, corresponding to an overall conversion efficiency of 2.86% under AM 1.5 sun light. Moreover, the HOMO and LUMO energy levels tuning can be conveniently accomplished by alternating the ligand. The high oxidative potential of Ir3 enables it to be used along with redox electrolyte and the photovoltage was found to be enhanced greatly.  相似文献   

19.
A new water-based solution of ion-conductive polymeric gel electrolyte composed of polyethylene glycol and polyvinylpyrrolidone as gel-forming substances, I?/I3 ? as reversible redox couple, and various ratios of acetonitrile/water solvents was prepared and used in the fabrication of dye-sensitized solar cells. The effects of water on the electrochemical behavior of the prepared electrolyte solutions were examined by the cyclic voltammetry and electrochemical impedance spectroscopy techniques. Electrochemical impedance spectroscopy was employed to quantify the charge-transfer resistance and the electron lifetime at the TiO2 conduction band. The characteristic peak shifted to a lower frequency in the Bode phase plot, which is an indication of a longer electron lifetime for the cell containing more water content. Photovoltaic performance of the cells prepared by the new water-based gel electrolyte was studied. Changes in the current density–voltage (JV) characteristics can be explained based on the effect of water on the energetics and kinetics of charge transport and charge recombination in the dye-sensitized solar cells (DSSCs). It was observed that the increase in open-circuit voltage (V oc) and fill factor and decrease in J SC were noticeable for cells containing water-based gel electrolyte. It was indicated that the charge recombination between injected electrons and electron acceptors (polyiodide) in the redox electrolyte was remarkably inhibited by the increase of water. The photovoltaic performance stability of the DSSC containing gel electrolyte solution including 50 wt% of water was examined, and it was shown that it is more stable than conventional cells considerably for 168 h. Energy conversion efficiency of 2.30 % was achieved, under illumination with a simulated solar light of 100 mW cm?2.  相似文献   

20.
Tin oxide (SnO2) is the most attractive alternative to titanium oxide (TiO2) with the aim of identifying a more positive conduction band material for dye-sensitized solar cells (DSCs). This study puts forward a protocol based on grinding, sonication, and centrifuge to generate transparent SnO2 pastes to minimize light reflectance losses from the metal oxide. Under optimized conditions, a highly transparent film with substantially enhanced light penetration depth through active layer SnO2 is realized for efficient light harvesting from two different commercially available powders (18 and 35 nm nanoparticle sizes). A ruthenium sensitizer ( B11 ) and two organic sensitizers ( NL3 and MK2 ) are shown to achieve higher or comparable photocurrent densities with SnO2 relative to standard TiO2-based DSCs. SnO2-based DSCs show minimum recombination losses, comparable charge collection efficiencies, and minimal photovoltage losses relative to TiO2 DSCs. Thus, the option of a transparent metal oxide, which can facilitate high photocurrents (>16 mA cm−2 observed) and lower recombination rates than TiO2 is an attractive material for DSC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号