首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied salt free semi dilute polyelectrolyte solutions by small angle neutron scattering. Specific labelling associated with an extrapolation method has allowed the separation of the form factor of a single polyelectrolyte chainS 1(q) and the structure factorS 2(q). Two lengths are deduced from these two factors: the persistence lengthb t which characterizes the electrostatic interactions along the chain by a fitting ofS 1(q) with calculation of the scattering function for a wormlike chain, and fromS 2(q),q m –1 which characterizes the interactions between chains. These two lengths vary in the same way with the concentration of polyions (b t C p –1/2 ,q m –1 C p –1/2 ) and a constant relation exists between them: only one length is then necessary to describe the structure of polyelectrolyte soltuion on this semidilute concentration range.Laboratoire Commun CEA-CNRS.  相似文献   

2.
A quartz crystal microbalance (QCM) and dual polarization interferometry (DPI) have been utilized to study how the structure of poly(allylamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) multilayers is affected by the rinsing method (i.e., the termination of polyelectrolyte adsorption). The effect of the type of counterions used in the deposition solution was also investigated, and the polyelectrolyte multilayers were formed in a 0.5 M electrolyte solution (NaCl and KBr). From the measurements, it was observed that thicker layers were obtained when using KBr in the deposition solution than when using NaCl. Three different rinsing protocols have been studied: (i) the same electrolyte solution as used during multilayer formation, (ii) pure water, and (iii) first a salt solution (0.5 M) and then pure water. When the multilayer with PAH as the outermost layer was exposed to pure water, an interesting phenomenon was discovered: a large change in the energy dissipation was measured with the QCM. This could be attributed to the swelling of the layer, and from both QCM and DPI it is obvious that only the outermost PAH layer swells (to a thickness of 25-30 nm) because of a decrease in ionic strength and hence an increase in intra- and interchain repulsion, whereas the underlying layers retain a very rigid and compact structure with a low water content. Interestingly, the outermost PAH layer seems to obtain very similar thicknesses in water independent of the electrolyte used for the multilayer buildup. Another interesting aspect was that the measured thickness with the DPI evaluated by a single-layer model did not correlate with the estimated thickness from the model calculations performed on the QCM-D data. Thus, we applied a two-layer model to evaluate the DPI data and the results were in excellent agreement with the QCM-D results. To our knowledge, this evaluation of DPI data has not been done previously.  相似文献   

3.
The assembled polyelectrolyte nanotubes composed of poly(styrenesulfonate) and poly(allylamine hydrochloride) multilayers by using the layer-by-layer assembly combined with the porous template method can be transformed into capsules by a high-temperature treatment. Scanning electron microscopy and confocal laser scanning microscopy images revealed the whole transition process. The structure transformation of polyelectrolyte multilayers after annealing can be initiated by the input of thermal energy which leads to a breakage of ion pairs between oppositely charged polyelectrolyte groups. The transition process from tubes to capsules is supposed to be driven by the Raleigh instability and leads to the generated polyelectrolyte capsules with different sizes.  相似文献   

4.
Inelastic light scattering experiments demonstrate the existence of a conformational change upon ionization of a weak acid polyelectrolyte in aqueous salt solutions. The swelling of the polymeric coil occurs at a neutralization degree increasing with molecular weight.  相似文献   

5.
We present a theory of coupled fluctuations of polymer segments, counterions, and coions in semidilute polyelectrolyte solutions containing added salt. The coupling among the three species results in three relaxation modes, instead of the previous common usage of only two relaxation modes by absorbing the role of salt as an effective solvent. Among the three modes, one is the nondiffusive plasmon mode and the other two are diffusive modes. These three modes are unrelated to any other slow mode that may arise from effects such as aggregation. Explicit expressions are derived for the decay rates in terms of concentrations of polyelectrolyte and salt, and the degree of ionization of the polymer. The specific values for the decay rates of the three modes are shown as an illustration for a chosen set of values of experimental variables. In the absence of added salt, the present theory reduces to the previous theory of fast diffusion in salt‐free polyelectrolyte solutions and to the Nernst–Hartley theory for simple electrolytes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1263–1269  相似文献   

6.
 The osmotic pressures of –polyelectrolyte solutions without added salt was measured in the concentration ranges 0.001–0.02 and 0.2–1.9 mol kg-1. Our results show that the osmotic coefficients φp were strongly dependent on the chemical structures of polyelectrolyte through the polyion radius and the interaction between the ionic moiety and counterions. The osmotic pressures in polyelectrolyte solutions without added salt, calculated on the basis of the counterion contribution, are in agreement with the experimental results. We conclude that the counterion contribution is dominant in the osmotic pressures and thus, the polymer contribution is negligible in the examined concentration range 0.2–1.9 mol kg-1. The P–B approach gave a fair prediction of the absolute values of the osmotic pressures with λ=4.5, where λ is the charge density parameter, except for NaPA. In other words, the concentration dependence of the φp values can be explained in terms of the counterion contribution. Received: 11 June 1997 Accepted: 19 August 1997  相似文献   

7.
8.
The formation and structure of multilayer films containing a cationic polyelectrolyte and anionic silica nanoparticles were studied by means of ellipsometry and atomic force microscopy. Three types of silica particles of different sizes were examined. The density and thickness of the films as well as the adsorption kinetics appear to be strongly dependent on the choice of particle; smaller particles favor the formation of smooth and dense films with a higher content of the inorganic component.  相似文献   

9.
Chain characteristics of a linear sulfonate-containing homopolymer, sodium poly(3-methacryloyloxypropane-1-sulfonate), in aqueous salt solutions (ionic strength, Cs = 0.01N to 5N NaCl) have been investigated by light scattering and intrinsic viscosity. The molecular weight (M?w)–viscosity relation can be well described by the Mark–Houwink and the Stockmayer–Fixman equations. The coil is highly expanded even in the most concentrated NaCl solution (6N), and no 1:1 electrolyte was found to precipitate this polymer. A linear relation was observed between the viscosity expansion factor, α3η, and (M?w/Cs)1/2. Examination of the data in terms of theories for excluded volume and hydrodynamic interaction suggests that the coil experiences dominant hydrodynamic interaction, corresponding to a nondraining coil, and the second virial coefficient and coil expansion at high Cs can be correlated by the Flory–Krigbaum–Orofino equation. Results for this polymer are compared with those for other polyelectrolytes, and are discussed in terms of chain structure, flexibility, and hydrophobicity.  相似文献   

10.
The elastic relaxation responding to a uniaxially stretched poly(acrylic acid) rodlike gel in the aqueous NaCl solution was investigated. The relaxation elucidated the shear (mu) and bulk (K) moduli and the frictional coefficients (sigma) of the fully ionized gel at pH above 9 as functions of the degree of swelling, which was controlled by the NaCl concentration (C(S)) of the solution. Two gels, cross-linked chains of which consist of 500 (GelA500) and 50 (GelA50) monomeric units, were examined to investigate the effect of the chain length on the elastic behavior. The moduli of GelA500 increased with swelling at C(S) below 100 mM and decreased at C(S) above it. The mu values of both gels can be characterized by the power function of gel diameter, d as mu proportional, variantd(beta). The beta values being -1 at C(S) above 100 mM transitionally changed to 1.2 at C(S) about 100 mM. That is, the dimensionality of space for the chains to distribute, n(dim) [= (beta+5)/(beta+2) according to the conventional theory [Sasaki et al., J. Chem. Phys. 102, 5694 (1995)]], changed from 4 (n(dim) of ideal chain) to 1.9 at C(S) = 100 mM. This indicates that the electrostatic repulsion between gel chains reduces the n(dim) at C(S) below 100 mM but not at C(S) above it. It was found that the K values of GelA500 were well described by the conventional theory but those of GelA50 not. The sigma(zr)/sigma(rr) (sigma(zr) is an off-diagonal element of the friction coefficient tensor and sigma(rr) is a diagonal element of the friction coefficient tensor) was found to be 2.7 x 10(-2), which was the same as the previously reported value for the swollen poly(acrylamide) gel [Sasaki, J. Chem. Phys. 120, 5789 (2004)]. The sigma(rr) of unit volume of the GelA500 is well explained by the free draining model while the sigma(rr) of GelA50 is less than that of the free draining model, suggesting the slip between water and ionized chain.  相似文献   

11.
Adsorption of colloidal particles presents an interesting alternative to the modification of surfaces using covalent coupling or physisorption of molecules. However, to tailor the properties of these materials full control over the effective particle-substrate interactions is required. We present a systematic investigation of the adsorption of spherical polyelectrolyte brushes (SPB) onto polyelectrolyte multilayers (PEM). A brush layer grafted from colloidal particles allows the incorporation of various functional moieties as well as the precise adjustment of their adsorption behaviour. In the presence of oppositely charged surfaces the amount of adsorbed SPB monotonically increases with the ionic strength, whereas equally charged substrates efficiently prevent colloidal attachment below a threshold salt concentration. We found that the transition from the osmotic to the salted brush regime at approximately 100 mM coincided with a complete loss of substrate selectivity. In this regime of high ionic strength, attractive secondary interactions become dominant over electrosteric repulsion. Due to the soft polyelectrolyte corona a surface coverage exceeding the theoretical jamming limit could be realized. Both the adsorption kinetics and the resulting thin film morphologies are discussed. Our study opens avenues for the production of two-dimensional arrays and three-dimensional multilayered structures of SPB particles.  相似文献   

12.
This review addresses the fabrication and properties of novel polyelectrolyte microcapsules, with an emphasis on their mechanical and permeability properties. Ease of preparation through layer-by-layer self assembly, accurate control over wall thickness as well as flexibility in the choice of constituents make these capsules very promising for numerous applications in materials and life science. Moreover, by engineering the inner and outer interfaces, these capsules can be used as microreactors for precipitation, crystallization, and polymerization reactions, as well as enzymatic, and heterogeneous catalysis.  相似文献   

13.
The growth, morphology, and interaction/adhesion properties of supported poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) and DNA/PAH multilayers were investigated by means of surface plasmon resonance spectroscopy, atomic force microscope (AFM) imaging, and AFM-related force measurements. Multilayers were assembled on a prelayer of poly(ethylenimine) (PEI) both with and without drying. SPR results showed a linear growth of the assembly in the case of PSS/PAH multilayers and nonlinear growth for DNA/PAH multilayers. Measurements of forces acting between a bare glass sphere and a multilayer-coated surface indicated repulsive or attractive forces, depending on surface charge, which suggests that, on approach, electrostatic forces dominate. On separation, we observed large pull-off forces in the case of positively charged multilayers and weak pull-off forces in the case negatively charged multilayers. Multiple adhesions and plateau regions observed on separation were interpreted in terms of a bridging of multiple polymer chains between the glass particle and the multilayer and a stretching of the polyelectrolyte loops. The dependence of the pull-off force on the number of deposited layers shows regular oscillations.  相似文献   

14.
15.
16.
Polyelectrolyte multilayers are built up from ionically modified polyphosphazenes by layer-by-layer assembly of a cationic (poly[bis(3-amino-N,N,N-trimethyl-1-propanaminium iodide)phosphazene] (PAZ+) and an anionic poly[bis(lithium carboxylatophenoxy)phosphazene] (PAZ-). In comparison, multilayers of poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) are investigated. Frequency-dependent conductivity spectra are taken in sandwich geometry at controlled relative humidity. Conductivity spectra of ion-conducting materials generally display a dc plateau at low frequencies and a dispersive regime at higher frequencies. In the present case, the dispersive regime shows a frequency dependence, which is deviating from the typical behavior found in most ion-conducting materials. Dc conductivity values, which can be attributed to long-range ionic transport, are on the order of sigmadc = 10-10-10-7 S.cm-1 and strongly depend on relative humidity. For PAZ+/PAZ- multilayers sigmadc is consistently larger by one decade as compared to PSS/PAH layers, while the humidity dependence is similar, pointing at general mechanisms. A general law of a linear dependence of log(sigmadc) on relative humidity is found over a wide range of humidity and holds for both multilayer systems. This very strong dependence was attributed to variations of the ion mobility with water content, since the water content itself is not drastically dependent on humidity.  相似文献   

17.
The neutron scattering intensity from polyelectrolyte solutions is calculated using an asymmetric primitive model electrolyte for the computation of the partial structure factors and a Debye function for the polyion form factor. The variation of the intensity with wavevector and concentration agrees with experimental results.  相似文献   

18.
Polyelectrolyte brushes are essential in many aspects of surface functionality, particularly for colloidal stabilization and lubrication in biological and materials science applications. It has been shown experimentally that the brushes undergo an abrupt shrinkage in the presence of multivalent counter-ions. This transition is studied here using a phenomenological mean-field approach with a model that specifically includes bridging of the polyelectrolyte chains by the multiple charges on the multivalent counter-ions. Using an energy balance represented by the sum of electrostatic, polymeric and entropic mean-field terms, additional parameterized phenomenological terms are introduced for counter-ion condensation and for the attractive interaction between adjacent polyelectrolyte chains to account for the bridging effect. The free energy is minimized with respect to the counter-ion populations and the brush height. In agreement with experimental observations, increasing the concentration of multivalent ions leads to a sharp collapse of the polyelectrolyte brush height. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 284–291  相似文献   

19.
Layer-by-layer deposition of sodium carboxymethylcellulose (NaCMC) and chitosan (CHI) was used to create polyelectrolyte multilayers on ellipsoidal beta-FeOOH particles at low ionic strength. Using electro-optics, we investigated the formation of films in dependence on the polyelectrolyte charge density by controlling pH of the dipping solutions. We found out a linear growth of the CMC/CHI films when they are constructed from highly charged CHI (at pH 4.0) and weakly charged NaCMC (at pH 4.0 and 5.5). The hydrodynamic thickness of the film constructed at pH 4.0/4.0 is unusually large for a linearly growing film (ca. 220 nm after deposition of 8 bilayers), but it strongly decreases (ca. 4 times) with increasing ionization of NaCMC (at pH 5.5). In both cases, the multilayer buildup proceeded through a series of adsorption-desorption steps. This was explained by a partial loss of CHI from the film surface on exposure to the solution of longer NaCMC molecules. The irregular film growth correlated quite well with the variations in the electrical polarizability of the polymer-coated particles. This correlation enabled us to conclude that the adsorption of both polymers occurs only on the film surface, with no diffusion in and out of the film bulk during deposition of each CMC/CHI bilayer.  相似文献   

20.
We analyze the adsorption of strongly charged polyelectrolytes onto weakly charged surfaces in divalent salt solutions. We include short-range attractions between the monomers and the surface and between condensed ions and monomers, as well correlations among the condensed ions. Our results are compared with the adsorption in monovalent salt solutions. Different surface charge densities (σ), and divalent (m) and monovalent (s) salt concentrations are considered. When the Wigner-Seitz cells diameter (2R) is larger than the length of the rod, the maximum amount of adsorption scales like nmax ∼ σ4/3 in both monovalent and divalent solutions. For homogeneously charged surfaces, the maximum adsorption occurs at s* ∼ σ2 when s* > ϕ, where ϕ is the monomer concentration, the counterpart for divalent salt solution, m* roughly scales as σ2.2 when m* > ϕ. The effective surface charge density has a maximum absolute value at m′ < m*. A discrete surface charge distribution and short-range attractions between monomers and surface charge groups can greatly enhance surface charge inversion especially for high salt concentration. The critical salt concentration for adsorption in divalent salt solution roughly scales as mcbσ1.9, where b is the distance between two neighboring charged monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3642–3653, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号