首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 1:1 complex of 1,2-ethanediol with dimethyl sulfoxide was studied using density functional theory. A network of three hydrogen bonds holds the complex together, including two in which each methyl group donates to the same hydroxyl oxygen. Four lines of evidence support the existence of methyl-donated hydrogen bonds. The interaction energy is 36 +/- 5 kJ/mol using Becke's three parameter hybrid theory with the 1991 nonlocal correlation functional of Perdew and Wang, and a moderately large basis set (B3PW91/6-311++G**//B3PW91/6-31+G**). To determine the energy of each hydrogen bond, a relaxed potential energy scan was performed in a smaller basis set to break the weaker hydrogen bonds by forced systematic rotation of the methyl groups. Two cross-checking analyses show cooperative effects that cause individual hydrogen bond energies in the network to be nonadditive. When one methyl hydrogen bond is broken, the remaining interactions stabilize the complex by storing an additional 2-3 kJ/mol. With all hydrogen bonds intact, the O[bond]H...O[bond]S hydrogen bond contributes 26 +/- 2 kJ/mol stability, and each weak methyl bond stores 5 +/- 2 kJ/mol.  相似文献   

2.
NMR spectra were collected for cross-linked poly(N-isopropylacrylamide), poly(NIPAM), hydrogels in the presence of NaCl and CaCl2 aqueous solutions. Intensity variations in the 1H NMR signals of the polymer provide insight into the phase transition process. These data were used to observe a two-stage phase transition process. Thermodynamic quantities were obtained from a van't Hoff analysis of the temperature-dependent equilibrium constants, which were derived from the NMR data. The Delta H degrees and Delta S degrees values for the hydrogel in D2O are 3.4 kJ/mol and 11.2 J/mol.K for stage I, which is attributed to the formation of hydrophobic bonds between neighboring isopropyl groups. The formation of hydrogen bonds during stage II yielded Delta H degrees and Delta S degrees values of 14.8 kJ/mol and 48.4 J/mol.K in D2O. However, the corresponding Delta H degrees values in 150 mM NaCl and 150 mM CaCl2 are reduced to 1.5 and 1.8 kJ/mol for stage I of the dehydration process. This corresponds to the known effect of salts on hydrophobic bond energetics. The value of Delta S degrees also decreased to 4.9 and 5.9 J/mol.K in NaCl and CaCl2 solutions, respectively. However, the thermodynamic values during stage II were only slightly affected by the salts. The lower temperatures required to induce spontaneous precipitation implies that Delta G degrees of precipitation is reduced. With our measurement of equilibrium thermodynamics, we see that 150 mM NaCl and CaCl2 solutions have a greater effect on hydrophobic bond formation associated with the phase transition process. In this manner, these salts aid in solvent reorganization necessary to form the hydrophobic bond, and this suggests that the formation of hydrophobic bonds is a strong determining factor in the stability of poly(NIPAM) hydrogels in water.  相似文献   

3.
The transition state (TS) for loss of CH4 from protonated acetaldehyde has been located at the second-order Moller-Plesset (MP2)/6-31G(d,p) level of theory. The activation energy is predicted to be 263.9 kJ/mol starting from the more stable form (methyl and hydrogen E) and 261.6 kJ/mol starting from the less stable form (methyl and hydrogen Z) that is required for reaction. The products (methane and the formyl ion) are predicted to lie 136.6 kJ/mol below the TS for their formation. MP2 methods underestimate the heats of formation of both the TS and the reaction products by about 40 kJ/mol when compared with experiment. Restricted Hartree-Fock (RHF) calculations give much more accurate relative energies. The MP2 TS leads directly to fragmentation and is described as a protonation of the methyl group by the acidic proton on oxygen. Under RHF theory the reaction is stepwise. An RHF TS similar to the MP2 TS leads to a nonclassical intermediate (which is stable at this level of theory) that has one of the C---H bonds protonated. This mechanism (protonation of an alkyl group) appears to be a general one for high energy 1,2 eliminations from organic cations. (J Am Soc Mass Spectrom 1994, 5, 1102-1106)  相似文献   

4.
Atomic force microscopy (AFM) was used to measure the chemical binding force of discrete electron donor-acceptor complexes formed at the interface between proximal self-assembled monolayers (SAMs). Derivatives of the well-known electron donor N,N,N',N'-tetramethylphenylenediamine (TMPD) and the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) were immobilized on Au-coated AFM tips and substrates by formation of SAMs of N,N,N'-trimethyl-N'-(10-thiodecyl)-1,4-phenylenediamine (I) and bis(10-(2-((2,5-cyclohexadiene-1,4-diylidene)dimalonitrile))decyl) disulfide (II), respectively. Pull-off forces between modified tips and substrates were measured under CHCl(3) solvent. The mean pull-off forces associated with TMPD/TCNQ microcontacts were more than an order of magnitude larger than the pull-off forces for TMPD/TMPD and TCNQ/TCNQ microcontacts, consistent with the presence of specific charge-transfer interactions between proximal TMPD donors and TCNQ acceptors. Furthermore, histograms of pull-off forces for TMPD/TCNQ contacts displayed 70 +/- 15 pN periodicity, assigned to the rupture of individual TMPD-TCNQ donor-acceptor (charge-transfer) complexes. Both the mean pull-off force and the 70 pN force quantum compare favorably with a contact mechanics model that incorporates the effects of discrete chemical bonds, solvent surface tensions, and random contact area variations in consecutive pull-offs. From the 70 pN force quantum, we estimate the single bond energy to be approximately 4-5 kJ/mol, in reasonable agreement with thermodynamic data. These experiments establish that binding forces due to discrete chemical bonds can be detected directly in AFM pull-off measurements employing SAM modified probes and substrates. Because SAMs can be prepared with a wide range of exposed functional groups, pull-off measurements between SAM-coated tips and substrates may provide a general strategy for directly measuring binding forces associated with a variety of simple, discrete chemical bonds, e.g., single hydrogen bonds.  相似文献   

5.
用从头计算方法在MP2 /6 31G(d)水平上研究了CX2 (X =H ,F ,Cl)与甲基异丙基醚的C -H键插入反应。CCl2 与甲基异丙基醚两个不同的α C的C -H键插入势垒分别为 117.2kJ/mol (甲基 )和 2 0 .6kJ/mol (异丙基 )。CF2 与异丙基α C的C -H键上插入势垒为 12 0 .0kJ/mol,在插入甲基上C -H键时会引起C -O键的断裂。CH2 的插入反应则不需要势垒。对CX2 与二甲醚、甲乙醚、甲基异丙基醚、甲基苄基醚上各种不同的C -H键插入势垒进行了比较 ,甲基和苯基都促使其毗邻的C -H键更容易被CX2 所插入  相似文献   

6.
We report the thermodynamics of binding of d-galactose and deoxy derivatives thereof to the arabinose binding protein (ABP). The "intrinsic" (solute-solute) free energy of binding DeltaG degrees (int) at 308 K for the 1-, 2-, 3-, and 6-hydroxyl groups of galactose is remarkably constant (approximately -30 kJ/mol), despite the fact that each hydroxyl group subtends different numbers of hydrogen bonds in the complex. The substantially unfavorable enthalpy of binding (approximately 30 kJ/mol) of 1-deoxygalactose, 2-deoxygalactose, and 3-deoxygalactose in comparison with galactose, cannot be readily accounted for by differences in solvation, suggesting that solute-solute hydrogen bonds are enthalpically significantly more favorable than solute-solvent hydrogen bonds. In contrast, the substantially higher affinity for 2-deoxygalactose in comparison with either 1-deoxygalactose or 3-deoxygalactose derives from differences in the solvation free energies of the free ligands.  相似文献   

7.
The thermodynamic properties of the two polytypes of n-hexatriacontane (n-C36H74), single-layered structure Mon and double-layered structure Orth II have been investigated by means of solubility measurements and incoherent inelastic neutron scattering. The solubility measurements reveal that Orth II is more stable than Mon by 1.2 kJ/mol because of the advantage of larger entropy. The neutron scattering measurements show that the vibrational modes of Orth II shift to the lower frequencies compared with those of Mon in the frequency region below 120 cm(-1). The advantage of Orth II in vibrational entropy due to the low-frequency shifts is estimated to be 9.6 J K(-1)/mol at 288 K under the harmonic approximation, which nearly agrees with the entropy difference of 6.8 J K(-1)/mol between Mon and Orth II determined by solubility measurements. These results suggest that the difference in vibrational entropy due to low-frequency modes mainly contributes to the relative thermodynamic stabilities of polytypic structures of long-chain compounds. From the frequency of methyl torsional mode, it is suggested that the cohesive force at the lamellar interface is stronger in Mon than in Orth II.  相似文献   

8.
Molecular structure of 1,1,1-trifluoro-pentane-2,4-dione, known as trifluoro-acetylacetone (TFAA), has been investigated by means of Density Functional Theory (DFT) calculations and the results were compared with those of acetylacetone (AA) and hexafluoro-acetylacetone (HFAA). The harmonic vibrational frequencies of both stable cis-enol forms were calculated at B3LYP level of theory using 6-31G** and 6-311++G** basis sets. We also calculated the anharmonic frequencies at B3LYP/6-31G** level of theory for both stable cis-enol isomers. The calculated frequencies, Raman and IR intensities, and depolarization ratios were compared with the experimental results. The energy difference between the two stable cis-enol forms, calculated at B3LYP/6-311++G**, is only 5.89 kJ/mol. The observed vibrational frequencies and Raman and IR intensities are in excellent agreement with the corresponding values calculated for the most stable conformation, 2TFAA. According to the theoretical calculations, the hydrogen bond strength for the most stable conformer is 57 kJ/mol, about 9.5kJ/mol less than that of AA and about 14.5 kJ/mol more than that of HFAA. These hydrogen bond strengths are consistent with the frequency shifts for OH/OD stretching and OH/OD out-of-plane bending modes upon substitution of CH(3) groups with CF(3) groups. By comparing the vibrational spectra of both theoretical and experimental data, it was concluded that 2TFAA is the dominant isomer.  相似文献   

9.
The adsorption of ammonia at various active centers at the outer and inner surfaces of mordenite, involving Br?nsted acid (BA) sites, terminal silanol groups, and Lewis sites has been investigated using periodic ab initio density-functional theory. It is shown that ammonia forms an ammonium ion when adsorbed at strong BA sites. The calculated adsorption energies for different BA sites vary in the interval from 111.5 to 174.7 kJ/mol depending on the local environment of the adduct. The lowest adsorption energy is found for a monodentate complex in the main channel, the highest for a tetradentate configuration in the side pocket. At weak BA sites such as terminal silanol groups or a defect with a BA site in a two-membered ring ammonia is H bonded via the N atom. Additional weak H bonds are formed between H atoms of ammonia and O atoms of neighboring terminal silanol groups. The calculated adsorption energies for such adducts range between 61.7 and 70.9 kJ/mol. The interaction of ammonia with different Lewis sites is shown to range between weak (DeltaE(ads)=17.8 kJ/mol) and very strong (DeltaE(ads)=161.7 kJ/mol), the strongest Lewis site being a tricoordinated Al atom at the outer surface. Our results are in very good agreement with the distribution of desorption energies estimated from temperature-programmed desorption (TPD) and microcalorimetry experiments, the multipeaked structure of the TPD spectra is shown to arise from strong and weak Br?nsted and Lewis sites. The vibrational properties of the adsorption complexes are investigated using a force-constant approach. The stretching and bending modes of NH(4) (+) adsorbed to the zeolite are strongly influenced by the local environment. The strongest redshift is calculated for the asymmetric stretching mode involving the NH group hydrogen bonded to the bridging O atom of the BA site, the shift is largest for a monodentate and smallest for a tetradentate adsorption complex. The reduced symmetry of the adsorbate also leads to a substantial splitting of the stretching and bending modes. In agreement with experiment we show that the main vibrational feature which differentiates coordinatively bonded ammonia from a hydrogen-bonded ammonium ion is the absence of bending modes above 1630 cm(-1) and in the region between 1260 and 1600 cm(-1), and a low-frequency bending band in the range from 1130 to 1260 cm(-1). The calculated distribution of vibrational frequencies agrees very well with the measured infrared adsorption spectra. From the comparison of the adsorption data and the vibrational spectra we conclude that due to the complex adsorption geometry the redshift of the asymmetric stretching is a better measure of the acidity of an active sites than the adsorption energy.  相似文献   

10.
Density functional theory, B3LYP/6‐31G** and B3LYP/6‐311+G(2d,p), and ab initio MP2/6‐31G** calculations have been carried out to investigate the conformers, transition states, and energy barriers of the conformational processes of oxalic acid and its anions. QCISD/6‐31G** geometrical optimization is also performed in the stable forms. Its calculated energy differences between the two most stable conformers are very near to the related observed value at 7.0 kJ/mol. It is found that the structures and relative energies of oxalic acid conformers predicted by these methods show similar results, and that the conformer L1 (C2h) with the double‐interfunctional‐groups hydrogen bonds is the most stable conformer. The magnitude of hydrogen bond energies depends on the energy differences of various optimized structures. The hydrogen bond energies will be about 32 kJ/mol for interfunctional groups, 17 kJ/mol for weak interfunctional groups, 24 kJ/mol for intra‐COOH in (COOH)2, and 60 kJ/mol for interfunctional groups in (COOH)COO−1 ion if calculated using the B3LYP/6‐311+G(2d,p) method. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 541–551, 2000  相似文献   

11.
A study of the kinetic stabilities of hydrogen-bonded double, tetra-, and hexarosette assemblies, comprising 36, 72, and 108 hydrogen bonds, respectively, is described. The kinetic stabilities are measured using both chiral amplification and racemization experiments. The chiral amplification studies show that solvent polarity and temperature strongly affect the kinetic stabilities of these hydrogen-bonded assemblies. For example, the activation energy for the dissociation of a tetramelamine from a tetrarosette assembly, a process that involves the breakage of 24 hydrogen bonds, was determined at 98.7 +/- 16.6 kJ mol(-1) in chloroform and 172.8 +/- 11.3 kJ mol(-1) in benzene. Moreover, racemization studies with enantiomerically enriched assemblies reveal a strong dependence of the kinetic stability on the number and strength of the hydrogen bonds involved in assembly formation. The half-lives for double, tetra-, and hexarosette assemblies were found to be 8.4 min, 5.5 h, and 150 h in chloroform at 50 degrees C, respectively. For higher generations of these types of assemblies, the kinetic stabilities become so high that they can no longer measured in a direct manner.  相似文献   

12.
孔令涛  沈本贤 《催化学报》2015,(7):1017-1022
利用周期性密度泛函理论研究了SAPO-34分子筛催化转化卤代甲烷制取低碳烯烃反应的碳池主要成分多甲基苯分子的偕甲基化反应。氯甲烷和溴甲烷分子在SAPO-34分子筛内的吸附能分别是–18和–22 kJ/mol,由于氯和溴原子相似的电负性,氯甲烷和溴甲烷分子的吸附能并未被精确区分。以氯甲烷和溴甲烷为甲基化试剂,得到了几种多甲基苯分子的偕甲基化反应能及能垒,结果表明,六甲基苯分子(HMB)的偕甲基化反应为放热反应,而其余甲基苯分子的偕甲基化反应为吸热反应。对于上述两种甲基化试剂,体积最大的HMB均表现出最低的偕甲基化反应能垒,这可能是由于分子筛骨架与多甲基苯分子之间的静电相互作用增强了HMB的反应活性所致。  相似文献   

13.
From a rheological study of emeraldine base (EB)/N‐methyl‐2‐pyrrolidinone (NMP)/2‐methyl‐aziridine (2MA) solutions, a correlation between the solution concentration and solution viscosity was found. We investigated the rheokinetic mechanism of the EB dissolution process and determined the reaction rate, activation energy, equilibrium constant, and Gibbs free energy (ΔGo) for the complexation between 2MA and EB tetrameric molecules ({EB}). The low rate constant (~3.0 × 10?4 mol?2 L2 min?1 at 298 K) indicates that the process of EB/NMP/2MA solution formation is slow. The {EB} and 2MA molecules need approximately 76 kJ/mol energy to form the complexes, and this implies that stable bonds may need to be broken before the complexes can form. Therefore, increasing the temperature can accelerate solution formation. The equilibrium constant increases with temperature, and this indicates that EB · 2MA complexation is endothermic. A positive value of ΔGo (5.26 kJ/mol) indicates that EB · 2MA complexation is a thermodynamically unfavorable reaction; therefore, the concentrated EB/NMP/2MA solutions eventually gel. Furthermore, we find that the activation energy of EB/NMP viscous flow is 80 kJ/mol, which is about 3–4 times the energy of ? N? H? hydrogen bonding. This suggests that at least three hydrogen bonds can form between two {EB} molecules, which might be responsible for the poor solubility of EB in organic solvents. The effects of the temperature, EB concentration, and 2MA:{EB} molar ratio on the gelation process have also been investigated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2702–2713, 2002  相似文献   

14.
The potential energy around the PN bonds for the Cl3PNP(X)Cl2 (X = O, S) molecules and [Cl3PNPCl3]+ cation have been derived from MNDO (modified neglect of diatomic overlap) calculations. The most stable conformations are two s-trans isomers in nearly eclipsed forms. The calculated structural parameters agree well with the X-ray experimental data. Barriers of 6 and 1.5 kJ/mol for the rotations of the POCl2 and PCl3 groups are predicted. In addition, the Raman spectra and the qualitative depolarization measurements for these molecules in the liquid phase have been obtained. All the data indicate that the molecules exist as a mixture of two rotamers in the molten phase. These two conformers are stabilized in the crystal packing of Cl3PNP(O)Cl2. The observed frequencies are in good agreement with the calculated values obtained by normal coordinate analysis. The MNDO calculation of the harmonic force field is in reasonable agreement with the experimental values. The force-constant values assigned to the torsional modes around the PN bonds correspond to low barriers for the internal rotations. These easy internal rotations around the PN and PN bonds can explain the flexibility of the phosphazene backbone and the elastomeric properties of the polyphosphazene polymers.  相似文献   

15.
The ground-state rotational spectrum of the dimethyl ether dimer, (DME)(2), has been studied by molecular beam Fourier transform microwave and free jet millimeter wave absorption spectroscopies. The molecular beam Fourier transform microwave spectra of the (DME-d(6))(2), (DME-(13)C)(2), (DME-d(6))...(DME), (DME-(13)C)...(DME), and (DME)...(DME-(13)C) isotopomers have also been assigned. The rotational parameters have been interpreted in terms of a C(s) geometry with the two monomers bound by three weak C-H...O hydrogen bonds, each with an average interaction energy of about 1.9 kJ/mol. The experimental data combined with high-level ab initio calculations show this kind of interaction to be improper, blue-shifted hydrogen bonding, with an average shortening of the C-H bonds involved in the hydrogen bonding of 0.0014 A. The length of the C-H...O hydrogen bonds, r(O...H), is in the range 2.52-2.59 A.  相似文献   

16.
The interacting patterns and mechanism of the catechin and thymine have been investigated with the density functional theory Becke's three-parameter nonlocal exchange functional and the Lee, Yang, and Parr nonlocal correlation functional (B3LYP) method by 6-31+G*basis set. Thirteen stable structures for the catechin-thymine complexes have been found which form two hydrogen bonds at least. The vibrational frequencies are also studied at the same level to analyze these complexes. The results indicated that catechin interactedwith thymine by three different hydrogen bonds as N-H…O、C-H…O、O-H…O and the complexes are mainly stabilized by the hydrogen bonding interactions. Theories of atoms in molecules and natural bond orbital have been adopted to investigate the hydrogen bondsinvolved in all systems. The interaction energies of all complexes have been corrected for basis set superposition error, which are from -18.15 kJ/mol to -32.99 kJ/mol. The results showed that the hydrogen bonding contribute to the interaction energies dominantly. The corresponding bonds stretching motions in all complexes are red-shifted relative to that of the monomer, which is in agreement with experimental results.  相似文献   

17.
Ab initio SCF and Mφller-Plesset correlation correction methods in combination with counterpose procedure for BSSE correction have been applied to the theroetical studying of dimethylnitroamine and its dimers and trimers.Three optimized stable dimers and two trimers have been obtained.The corrected binding energies of the most stable dimer and trimer were predicted to be -24.68kJ/mol and -47.27kJ/mol,respectively at the MP2/6-31G^*//HF/6-31G^* level.The proportion of correlated interation energies to their total interaction energies for all clusters was at least 29.3 percent,and the BSSE of ΔE(MP2) was at least 10.0kJ/mol.Dispersion and/or electrostatic force were dominant in all clusters.There exist cooperative effects in both the chain and the cyclic trimers.The vibrational frequencies associated with N-O stretches or wags exhibit slight red shifts,but the modes associated with the motion of hydrogen atoms of the methyl group show somewhat blue shifts with respect to those of monomer.Thermodynamic properties of dimethylnitroamine and its clusters at different temperatures have been calculated on the basis of vibrational analyses.The changes of the Gibbs free energies for the aggregation from monomer to the most stable dimer and trimer were predicted to be 14.37kJ/mol and 30.40kJ/mol,respectively,at 1 atm and 298.15K.  相似文献   

18.
We present theoretically as well as experimentally determined thermochemical data of the non-covalent interactions in different axle-substituted pseudorotaxanes. The overall interaction energy lies in the region of 35 kJ mol(-1), independent of the substitution pattern at the axle. Because rearrangement energies of 7 and 3 kJ mol(-1) are required for wheel and axle, respectively, the sum of the net interactions of individual non-covalent bonds must exceed 10 kJ mol(-1) to achieve a successful host-guest interaction. The geometrical analysis shows three hydrogen bonds, and the close inspection of the individual dipole moments as well as the individual hydrogen bonds reveals trends according to the different functional groups at the axle. The individual trends for the different hydrogen bonds almost lead to a cancellation of the substitution effects. From solvent-effect considerations it can be predicted that the pseudorotaxane is stable in CHCl(3) and CH(2)Cl(2), whereas it would dethread in water. Comparing experimentally and theoretically calculated Gibbs free enthalpies, we find reasonable agreement if an exchange reaction of one solvent molecule instead of the direct formation reaction is considered.  相似文献   

19.
Protonated acetamide exists as two planar conformers, the more stable anti-form (anti-1(+)) and the syn-form (syn-1(+)), DeltaG(degree) (298) (anti-->syn) = 10.8 kJ mol(-1). Collisional neutralization of 1(+) produces 1-hydroxy-1-amino-1-ethyl radicals (anti-1 and syn-1) which in part survive for 3.7 micros. The major dissociation of 1 is loss of the hydroxyl hydrogen atom (approximately 95%) which is accompanied by loss of one of the methyl hydrogen atoms (approximately 3%) and loss of the methyl group (approximately 2%). The most favorable dissociation of the OH bond is calculated to be only 34 kJ mol(1) endothermic but requires 88 kJ mol(-1) in the transition state. Other dissociations of 1, e.g., loss of one of the amide hydrogens, methyl hydrogens, and loss of ammonia are calculated to proceed through higher- energy transition states and are not kinetically competitive if proceeding from the ground doublet electronic state of 1. The unimolecular dissociation of 1 following collisional electron transfer is promoted by large Franck-Condon effects that result in 8090 kJ mol(-1) vibrational excitation in the radicals. Radicals 1 are calculated to exoergically abstract hydrogen atoms from acetamide in water, but not in the gas phase. The different reactivity is due to solvent effects that favor the products, (.)CH(2)CONH(2) and CH(3)CH(OH)NH(2), over the reactants.  相似文献   

20.
Bromo- and iodomethanes and the corresponding halogenated methyl radicals have been investigated by ab initio methods. Geometries and vibrational frequencies were derived with quadratic configuration interaction methods at the QCISD/6-311G(d,p) level of theory, and energies via QCISD(T)/6-311+G(3df,2p). Core electrons were represented with relativistic effective potentials. Anharmonicity of the out-of-plane bending modes in the methyl radicals was taken into account by numerical integration of the Schr?dinger equation with potentials derived from relaxed scans of these modes. The results are in good accord with experimental data where available. Thermochemistry derived via isodesmic reactions referenced to CH3, CH4, and monohalomethanes yields excellent accord with new experiments on dihalomethanes and provides recommendations for the more poorly characterized tri- and tetrahalomethanes and halomethyl radicals. For the methanes CH2Br2, CHBr3, CBr4, CH2I2, CHI3, CI4, CH2BrI, CHBr2I, and CHBrI2 we compute DeltafH degrees (298) values of 4.3, 51.6, 110.6, 108.1, 208.5, 321.3, 56.8, 104.8, and 157.1 kJ mol(-1), respectively. For the methyl radicals CH2Br, CHBr2, CBr3, CH2I, CHI2, CI3, CHBrI, CBr2I, and CBrI2 we compute DeltafH degrees (298) values of 166.6, 191.7, 224.0, 217.2, 290.4, 369.1, 241.6, 320.8, and 272.3 kJ mol(-1), respectively. Recommended confidence limits are +/-3 kJ mol(-1) per Br or I atom. Trends in these values and the corresponding C-H bond strengths are discussed and compared with prior experiments, empirical estimation schemes, and ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号