首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Infrared spectra of hydrogen-carbonyl sulfide clusters containing paraH2, orthoH2, or HD have been studied in the 2060 cm(-1) region of the C-O stretching vibration. The clusters were formed in pulsed supersonic jet expansions and probed using a tunable infrared diode laser spectrometer. Simple symmetric rotor type spectra were observed and assigned for clusters containing up to N = 7 hydrogen molecules. There was no resolved K structure, and Q-branch features were present for orthoH2 and HD but absent for paraH2. These characteristics can be rationalized in terms of near symmetric rotor structures, very low effective rotational temperatures (0.15 to 0.6 K), and nuclear spin statistics. The observed vibrational shifts were compared with those from recent observations on the same clusters embedded in helium nanodroplets. The observed rotational constants for the paraH2 clusters are in good agreement with a recent quantum Monte Carlo simulation. Some mixed clusters were also observed, such as HD-HD-He-OCS and paraH2 - orthoH2 - OCS.  相似文献   

2.
High resolution infrared spectra of HeN-N2O clusters are studied in the 2200 cm(-1) region of the N2O nu1 fundamental band. The clusters are produced in a pulsed supersonic jet expansion from a cooled nozzle source and probed using a tunable diode laser operating in a rapid-scan mode. Three isotopic forms are used (14N14N16O, 15N14N16O, and 15N15N16O) in order to support the spectral analyses. For clusters up to N approximately 24, the individual spectra are resolved, assigned, and analyzed together with complementary microwave data. Assignments for larger clusters are uncertain due to overlapping transitions, but an approximate analysis is still possible for N approximately 25-80. Compared to helium clusters containing the related CO2 or OCS molecules, the rotational dynamics of HeN-N2O clusters show similarities but also important differences. In particular, HeN-N2O has more irregular behavior in the range of N=6-17, indicating that conventional molecular structure plays a greater role. In general terms, these differences can be attributed to a greater degree of angular anisotropy in the He-N2O intermolecular potential.  相似文献   

3.
Clusters of para-H(2) and/or ortho-H(2) containing a single carbon dioxide molecule are studied by high resolution infrared spectroscopy in the 2300 cm(-1) region of the CO(2) ν(3) fundamental band. The (H(2))(N)-CO(2) clusters are formed in a pulsed supersonic jet expansion from a cooled nozzle and probed using a rapid scan tunable diode laser. Simple symmetric rotor type spectra are observed with little or no resolved K-structure, and prominent Q-branch features for ortho-H(2) but not para-H(2). Observed rotational constants and vibrational shifts are reported for ortho-H(2) up to N = 7 and para-H(2) up to N = 15, with the N > 7 assignments only made possible with the help of theoretical simulations. The para-H(2) cluster with N = 12 shows clear evidence for superfluid effects, in good agreement with theory. The presence of larger clusters with N > 15 is evident in the spectra, but specific assignments are not possible. Mixed para- + ortho-H(2) cluster transitions are well predicted by linear interpolation between corresponding pure cluster line positions.  相似文献   

4.
High resolution spectra of (4)He(N)-CO(2) clusters are studied in the region of the CO(2) nu(3) fundamental band (approximately 2300 cm(-1)). The clusters are produced in a pulsed supersonic jet expansion from a cooled nozzle source and probed by direct absorption using a tunable diode laser operating in a rapid-scan mode. Four carbon dioxide isotopes ((16)O(12)C(16)O, (16)O(13)C(16)O, (18)O(13)C(18)O, and (16)O(13)C(18)O) are used to support the analysis, and because additional rotational transitions are allowed for the asymmetric one ((16)O(13)C(18)O). Resolved R(0) (J=1<--0) rotation-vibration transitions are observed for clusters up to N=60. A detailed rotational analysis is possible up to N approximately 20 and, with some assumptions, to N approximately 37 and beyond. The derived rotational constants (B values) vary smoothly with N and show evidence for broad oscillations similar to those already reported for He(N)-OCS and He(N)-N(2)O. Possible indications of a disruption are observed in the J=2 levels of larger clusters (N>22) which could be caused by interactions with a "dark" helium cluster modes.  相似文献   

5.
Isolated superoxide ions solvated by CO2 have been studied by infrared photodissociation spectroscopy and density-functional theory, using CO2 evaporation upon infrared excitation of the O2- x (CO2)n (n=1-6) parent ions. We can assign the observed frequencies to the asymmetric stretch vibration and its combination bands with the symmetric stretch and the overtone of the bending vibration of CO2 in various binding situations. We interpret our findings with the help of density-functional theory. Our data suggest that only one CO2 moiety binds strongly to the O2-, whereas the rest of the CO2 molecules are weakly bound, which is consistent with the experimental spectra. The lobes of the pi* orbital of O2- provide a template for the structure of the microsolvation environment.  相似文献   

6.
The infrared spectra of the water-nitrogen complexes trapped in argon matrices have been studied with Fourier transform infrared absorption spectroscopy. The absorption lines of the H20-N2 1:1, 1:2, 1:n, and 2:1 complexes have been confirmed on the basis of the concentration effects. In addition, we have observed a few lines and propose the assignments for the 2:2, 2:3, and 2:4 complexes in the nu1 symmetric stretching and nu2 bending regions of the proton-acceptor molecule, and in the bonded OH stretching region of the proton-donor molecule. The redshifts in the bonded OH stretching mode and blueshifts in the OH bending mode suggest that the hydrogen bonds in the (H2O)2-(N2)n complexes with n = 1-4 are strengthened by the cooperative effects compared to the pure H2O dimer. Two absorption bands due to the 3:n complexes are also observed near the bonded OH stretching region of the H2O trimer.  相似文献   

7.
We study the solvation of HC2- and O2- with acetylene ligands by means of midinfrared photodissociation spectroscopy in the CH stretching region, monitoring C2H2 evaporation upon infrared photon absorption by the parent cluster ions. Our findings are interpreted with the help of density functional theory. The infrared spectra indicate that while the binding generally occurs through ionic H bonds, there are two different classes of ligands which differ in their binding strength. This holds true for both core ions, even though their electronic structures and charge distributions are very different.  相似文献   

8.
High-resolution infrared spectra of the clusters N2O-(ortho-D2)N and N2O-(HD)N, N=1-4, isolated in bulk solid parahydrogen at liquid helium temperatures are studied in the 2225 cm-1 region of the nu3 antisymmetric stretch of N2O. The clusters form during vapor deposition of separate gas streams of a precooled hydrogen mixture (ortho-D2para-H2 or HDpara-H2) and N2O onto a BaF2 optical substrate held at approximately 2.5 K in a sample-in-vacuum liquid helium cryostat. The cluster spectra reveal the N2O nu3 vibrational frequency shifts to higher energy as a function of N, and the shifts are larger for ortho-D2 compared to HD. These vibrational shifts result from the reduced translational zero-point energy for N2O solvated by the heavier hydrogen isotopomers. These spectra allow the N=0 peak at 2221.634 cm-1, corresponding to the nu3 vibrational frequency of N2O isolated in pure solid parahydrogen, to be assigned. The intensity of the N=0 absorption feature displays a strong temperature dependence, suggesting that significant structural changes occur in the parahydrogen solvation environment of N2O in the 1.8-4.9 K temperature range studied.  相似文献   

9.
The authors report theoretical results on structure, bonding, energy, and infrared spectra of iodine dimer radical anion hydrated clusters, I(2) (-).nH(2)O (n=1-8), based on a systematic study following density functional theory. Several initial guess structures are considered for each size cluster to locate minimum energy conformers with a Gaussian 6-311++G(d,p) split valence basis function (triple split valence 6-311 basis set is applied for iodine). It is observed that three different types of hydrogen bonded structures, namely, symmetrical double hydrogen bonding, single hydrogen bonding, and interwater hydrogen bonding structures, are possible in these hydrated clusters. But conformers having interwater hydrogen bonding arrangements are more stable compared to those of double or single hydrogen bonded structures. It is also noticed that up to four solvent H(2)O units can reside around the solute in interwater hydrogen bonding network. At the maximum six H(2)O units are independently linked to the dimer anion having four double hydrogen bonding and two single hydrogen bonding, suggesting the hydration number of I(2) (-) to be 6. However, conformers having H(2)O units independently linked to the iodine dimer anion are not the most stable structures. In all these hydrated clusters, the odd electron is found to be localized over two I atoms and the two atoms are bound by a three-electron hemi bond. The solvation, interaction, and vertical detachment energies are calculated for all I(2) (-).nH(2)O clusters. Energy of interaction and vertical detachment energy profiles show stepwise saturation, indicating geometrical shell closing in the hydrated clusters, but solvation energy profile fails to show such behavior. A linear correlation is observed between the calculated energy of interaction and vertical detachment energy. It is observed that formation of I(2) (-)-water cluster induces significant shifts from the normal O-H stretching modes of isolated H(2)O. However, bending mode of H(2)O remains insensitive to the successive addition of solvent H(2)O units. Weighted average energy profiles and IR spectra are reported for all the hydrated clusters based on the statistical population of individual conformers at room temperature.  相似文献   

10.
11.
The structural and electronic properties of In(n)N(n=1-13) clusters have been investigated by density-functional theory with the generalized gradient approximation. The results indicate that the equilibrium structures of In(n)N are linear for n=1,2, planar for n=3-5, and three dimensional for n=6-13. Maximum peaks were observed for In(n)N clusters at n=3,7,9 on the size dependence for second-order energy difference. These imply that these clusters possess relatively higher stability, which is consistent with the case of binding energy per atom. Moreover, the results show that the bonding in small In(n)N clusters has a little ionic character by Mulliken population analysis. The energy gap between the highest occupied and lowest unoccupied molecular orbitals, the vertical ionization potential and electron vertical affinity (VIP and VEA) form an even-odd alternating pattern with increasing cluster size. In general, the VIP tends to lower as the cluster size increases, while the VEA tends to increase as the cluster size increases.  相似文献   

12.
A first-principles quantum chemistry method, based on the Kohn-Sham density-functional theory, is used to investigate the adsorption of CO and O2 on small gas-phase gold cluster anions. The saturated adsorption of carbon monoxide on gold cluster anions AuN- (N=2-7) is discussed. The adsorption ability of CO reduces with the increase of the number of CO molecules bound to gold cluster anions, resulting in saturated adsorption at a certain amount of absorbed CO molecules, which is determined by geometric and electronic properties of gold clusters cooperatively. The effect of CO preadsorption on the electronic properties of gold cluster anions depends on the cluster size and the number of adsorbed CO, and the vertical detachment energies of CO-adsorbed gold cluster anions show a few changes with respect to corresponding pure gold cluster anions. The results indicate that the impinging adsorption of CO molecules may lead to geometry structure transformation on Au3- cluster. For the coadsorption of CO and O2 on Au2-, Au3- isomers, Au4-, and Au6-, we describe the cooperative adsorption between CO and O2, and find that the O2 dissociation is difficult on gas-phase gold cluster anions even with the preadsorption of CO.  相似文献   

13.
Infrared spectra of mass-selected F- -(CH4)n (n = 1-8) clusters are recorded in the CH stretching region (2500-3100 cm-1). Spectra for the n = 1-3 clusters are interpreted with the aid of ab initio calculations at the MP2/6-311++G(2df 2p) level, which suggest that the CH4 ligands bind to F- by equivalent, linear hydrogen bonds. Anharmonic frequencies for CH4 and F--CH4 are determined using the vibrational self-consistent field method with second-order perturbation theory correction. The n = 1 complex is predicted to have a C3v structure with a single CH group hydrogen bonded to F-. Its spectrum exhibits a parallel band associated with a stretching vibration of the hydrogen-bonded CH group that is red-shifted by 380 cm-1 from the nu1 band of free CH4 and a perpendicular band associated with the asymmetric stretching motion of the nonbonded CH groups, slightly red-shifted from the nu3 band of free CH4. As n increases, additional vibrational bands appear as a result of Fermi resonances between the hydrogen-bonded CH stretching vibrational mode and the 2nu4 overtone and nu2+nu4 combination levels of the methane solvent molecules. For clusters with n < or = 8, it appears that the CH4 molecules are accommodated in the first solvation shell, each being attached to the F- anion by equivalent hydrogen bonds.  相似文献   

14.
Hydrogen-bonded heteroclusters of H(2)O(2)...(H(2)O)(n)(), with n varying from 1 through 6, have been investigated herein employing ab initio quantum chemical methods. For a given n, several energetically comparable conformers emerge as local minima on the potential energy surface (PES). All of the conformers obtained at restricted Hartree-Fock (RHF) and M?ller-Plesset second-order perturbation (MP2) levels of theory exhibit parallel trends in energy hierarchy. The effect of clustering by water on the modification in the vibrational frequencies has also been investigated and further, a many-body interaction-energy analysis is carried out providing insights into cooperativity in H(2)O(2)...(H(2)O)(n)() clusters.  相似文献   

15.
Using a cluster model, we investigated the similarities and differences in chemical activity and the magnetic properties of Sc(n) clusters (n = 2-13) and their oxides, Sc(n)O, toward CO molecule adsorption via a spin-polarized density functional theory approach. The Sc(n) and Sc(n)O clusters have similar chemical activity at small sizes of n = 2-10, whereas remarkable differences are observed at large sizes of n = 11-13. More interestingly, different magnetic responses are found in the Sc(n) and Sc(n)O clusters with the presence of CO molecule: The magnetic moment is attenuated significantly for Sc(n) with n = 2, 4, 12, and 13, whereas for Sc(n)O, it is enhanced at n = 4 and 13 and is reduced for n = 7, 8, 10, and 11. In particular, the magnetic moment remarkably increases from 7 μ(B) of Sc(13)O to 13 μ(B) of Sc(13)OCO, whereas it reduces from 19 μ(B) of Sc(13) to 5 μ(B) of Sc(13)CO.  相似文献   

16.
17.
18.
Infrared spectra of isotopically substituted HeN-CO clusters (1 < N < 19) have been studied in order to extend the original results on the normal isotope. The same two series of R(0) transitions were observed, correlating with the a- and b-type transitions of He1-CO, with only small shifts in relative position. The previously obscured a-type line for He6-CO was detected. Examination of the small shifts among isotopomers showed remarkably smooth behavior, except in the "unstable" regions around N=7 (b-type series) and 15 (a-type series). The overall results firmly support the assignments and analysis given for the normal isotope.  相似文献   

19.
In an effort to elucidate their structures, mass-selected Cl--(CH4)n (n = 1-10) clusters are probed using infrared spectroscopy in the CH stretch region (2800-3100 cm(-1)). Accompanying ab initio calculations at the MP2/6-311++G(2df,2p) level for the n = 1-3 clusters suggest that methane molecules prefer to attach to the chloride anion by single linear H-bonds and sit adjacent to one another. These conclusions are supported by the agreement between experimental and calculated vibrational band frequencies and intensities. Infrared spectra in the CH stretch region for Cl--(CH4)n clusters containing up to ten CH4 ligands are remarkably simple, each being dominated by a single narrow peak associated with stretching motion of hydrogen-bonded CH groups. The observations are consistent with cluster structures in which at least ten equivalent methane molecules can be accommodated in the first solvation shell about a chloride anion.  相似文献   

20.
A similarity between manifestations of the effects of the intra- and intermolecular hydrogen bonds C-H...X (X = O, N) in1H and13C NMR spectra has been shown. A correlated increase in the direct spin-spin coupling constant13C—1H and the chemical shifts of the proton participating in the interaction has been observed.Translated fromIzvestiya Akademii Nauk. Seriyo Khimicheskaya, No. 5, pp. 1205–1207, May, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号