首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
The results from theoretical and experimental studies of the magnetic properties of quasi-one-dimensional compounds consisting of molecular chains with magnetic ions are discussed. Along with traditional systems with antiferromagnetic exchange interaction of the nearest magnetic ions in a chain, a class of recently synthesized cuprates with frustrating (competing) ferro- and antiferromagnetic interactions is considered. Attention is focused on the properties of the ground state and low-temperature thermodynamics of these cuprates, depending on the frustration parameter.  相似文献   

2.
Using relativistic and on-site correlation-corrected density functional theory, we have investigated the structural and magnetic properties of recently synthesized Gd3N@C80. The most stable structure of Gd3N@C80 has the three magnetic Gd ions pointing to the centers of hexagons in C80. The magnetic ground state of this structure has the three coplanar spins (S = 7/2) offset by 120 degrees angles. At the same time, the state with the highest multiplicity, where all the spins are parallel aligned, is found only about 4.5 meV higher in energy. Therefore, at room temperature, we expect Gd3N@C80 to be paramagnetic with the spin fluctuating between different multiplicities. As a result, Gd3N@C80 may exhibit greater proton relaxivity than Gd@C60 and Gd@C82 and serve as a possible candidate for the next generation of commercially available magnetic resonance imaging contrast agents.  相似文献   

3.
A new family of compounds ACu7TeO4(SO4)5Cl (A=Na, K, Rb, Cs) isostructural to mineral Nabokoite (K species) was synthesized by solid state and gas transport reactions in sealed ampoules and characterized in measurements of magnetization and specific heat in a wide temperature range. These complex compounds are of the utmost interest as a testing playground to study the properties of quasi-two-dimensional magnets with a square kagome lattice geometry. A quantum ground state of such a corner-sharing network is a spin liquid. Unlike idealized grid analyzed in numerous models, the square kagome lattice in nabokoites is wavy and distorted being composed of versatile triangles. Moreover, it contains “excessive” decorating magnetic ions, which makes magnetism of these objects even more complicated. The interaction of these decorating ions through virtual excitations of the square kagome lattice is accompanied by the formation of a long-range magnetic order coexisting with the spin liquid.  相似文献   

4.
Many of the (ideal) infinite conjugated hydrocarbon polymers do not present a gap at the Fermi level in tight-binding calculations. However, due to the bielectronic interaction the excitation energy from the ground state to the lowest triplet state may be nonzero for some lattices (called spin gapped), while other lattices will keep a singlet-triplet degeneracy (spin-gapless lattices). This difference results in qualitative differences in their magnetic properties. Making use of the relevance of Heisenberg Hamiltonians for the study of the lowest states of conjugated hydrocarbons, this paper presents some qualitative arguments to predict the spin-gap character of various classes of such polymers. The arguments are based on real space renormalization group procedures, which considers fragments of the polymers as effective spins. Numerical evaluations, based on a renormalized excitonic method, confirm the qualitative predictions.  相似文献   

5.
Compounds possessing the Kagome network are truly interesting because of their unusual low-energy properties. They exhibit magnetic frustration because of the triangular lattice inherent to the hexagonal bronze structure they possess, as indeed demonstrated by some of the Fe(3+) jarosites, but this is not the general case. Kagome compounds formed by transition metal ions with varying spins exhibit novel magnetic properties, some even showing evidence for magnetic order and absence of frustration. We describe the structure and magnetic properties of this interesting class of materials and attempt to provide an explanation for the variety of properties on the basis of theoretical considerations.  相似文献   

6.
《Polyhedron》2005,24(16-17):2396-2399
Size dependence of the magnetic properties in nanoscale ferrimagnetic rings is investigated by the numerical diagonalization of the Heisenberg model. The field derivative of the magnetization is drastically dependent on size of the ring if the magnetic system has frustration, although the character does not exist in the non-frustrated system. Our numerical data support this tendency that the effect of frustration causes the size dependence of the magnetic properties in the nanoscale ferrimagnetic ring. We also demonstrate that the size dependence caused by frustration is also found in behavior of the translational quantum number of the ground state.  相似文献   

7.
The crystal structure and physical properties of radical ion salts (EDO-TTFBr2)2FeX4 (X = Cl, Br) based on halogen-substituted organic donor and magnetic anions are investigated, including the comparison with the isomorphous compounds (EDO-TTFBr2)2GaX4 with nonmagnetic anions. The crystal structure of these four salts consists of uniformly stacked donor molecules and tetrahedral counter anions, and the Br substituents of the donor molecules are connected to halide ligands of anions with remarkably short intermolecular atomic distances. These salts show metallic behavior around room temperature and undergo a spin-density-wave transition in the low-temperature range, as confirmed with the divergence of the electron spin resonance (ESR) line width. Although close anion-anion contacts are absent in these salts, the FeCl4 salt undergoes an antiferromagnetic transition at TN = 4.2 K, and the FeBr4 salt shows successive magnetic transitions at TN = 13.5 K and TC2 = 8.5 K with a helical spin structure as a candidate for the ground state of the d-electron spins. The magnetoresistance of the FeCl4 salt shows stepwise anomalies, which are explained qualitatively using a pi-d interaction-based frustrated spin system model composed of the donor pi-electron and the anion d-electron spins. Although on the ESR spectra of the FeX4 salts signals from the pi- and d-electron spins are separately observed, the line width of the pi-electron spins broadens under the temperature where the susceptibility deviates from the Curie-Weiss behavior, showing the presence of the pi-d interaction.  相似文献   

8.
The members of the family of pyrochlore oxides with the formula R(2)MnRuO(7) (R = Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) have been synthesized and characterized. Polycrystalline samples were prepared by a soft chemistry procedure involving citrates of the different metal ions, followed by thermal treatments in air or O(2) pressure. The crystallographic and magnetic structures have been analysed from X-ray diffraction (XRD) and neutron powder diffraction (NPD) data, in complement with magnetic measurements; the evolution along the series of the crystallographic parameters (unit-cell parameters, bond distances and angles) is discussed. In R(2)MnRuO(7) pyrochlores, Mn and Ru ions statistically occupy the 16c sites in a cubic unit cell with space group Fd ?3m, which defines an intrinsic frustrated three-dimensional system. In all the cases, the low-temperature NPD data unveils an antiferromagnetic coupling of two subsets of Mn(4+)/Ru(4+) spins, indicating that the magnetic frustration is partially relieved by the random distribution of Mn and Ru over the 16c sites. At lower temperatures there is a polarization of the R(3+) magnetic moments, which also participate in the magnetic structure, when a magnetic rare earth is present.  相似文献   

9.
Materials with triangular arrangements of transition metal ions are of great interest for their complex magnetism resulting from geometric frustration. This paper describes the stepwise formation of kagome lattices of open shell transition-metal ions from half-delta chains to delta/sawtooth chains, and finally kagome nets. The systems can be viewed as a testbed for magnetic studies since a variety of spin states can be introduced across the same structure type, and progress through increasing levels of structural complexity and dimensionality. The synthetic and structural development of this continuum is studied here in well-formed single crystals of A2M3(MoO4)3(OH)2 (A=K, Rb; M=Mn, Co), CsM2(MoO4)2(OH) (M=Mn, Fe, Co, Zn), and KM3(MoO4)2O(OH) (M=Mn).  相似文献   

10.
The YbFe2O4structure type consists of triangular layers of lanthanide oxygen octahedra stacked with triangular double layers of transition metal oxygen triangular bipyramids. The crystallographic structures determined by neutron diffraction powder profile analysis at 300 and 11 K for new members of this structural family are reported. The compounds are found to be magnetically frustrated, by both lattice geometry and disorder. The magnetic properties of YbCuGaO4, LuCuGaO4, LuZnFeO4, LuCoGaO4, and LuCuFeO4reveal the effects of total spin, spin mixing, and interaction between spins on different sublattices on the magnetic frustration. The magnetism is increasingly frustrated as the spin on the magnetic ions is decreased.  相似文献   

11.
Structural characterization, exploiting X-ray scattering differences at elemental absorption edges, is developed to quantitatively determine crystallographic site-specific metal disorder. We apply this technique to the problem of Zn-Cu chemical disorder in ZnCu(3)(OH)(6)Cl(2). This geometrically frustrated kagome? antiferromagnet is one of the best candidates for a spin-liquid ground state, but chemical disorder has been suggested as a mundane explanation for its magnetic properties. Using anomalous scattering at the Zn and Cu edges, we determine that there is no Zn occupation of the intralayer Cu sites within the kagome? layer; however there is Cu present on the Zn intersite, leading to a structural formula of (Zn(0.85)Cu(0.15))Cu(3)(OH)(6)Cl(2). The lack of Zn mixing onto the kagome? lattice sites lends support to the idea that the electronic ground state in ZnCu(3)(OH)(6)Cl(2) and its relatives is nontrivial.  相似文献   

12.
We report magnetic and magnetic circular dichroism investigations of a binuclear Co(II) compound. The Hamiltonian of the system involves an isotropic exchange interaction dealing with the real spins of cobalt(II) ions, spin-orbit coupling, and a low-symmetry crystal field acting within the (4)T(1g) ground manifold of each cobalt ion. It is shown that spin-orbit coupling between this ground term and the low-lying excited ones can be taken into consideration as an effective g factor in the Zeeman part of the Hamiltonian. The value of this g factor is estimated for the averaged experimental values of Racah and cubic ligand field parameters for high-spin cobalt(II). The treatment of the Hamiltonian is performed with the use of a irreducible tensor operator technique. The results of the calculation are in good agreement with experimental observations. Both a large effective g factor for the ground state and a large temperature-independent part of the magnetic susceptibility arise because of a strong orbital contribution to the magnetic behavior of the Co(II) dimer.  相似文献   

13.
The reaction of the pentadentate Schiff-base ligand 1,3-bis(salicylideneamino)-2-propanol (salproH3) with [Mn3O(O2CR)6(py)3] (R = Me, Et, But) gives the corresponding tetranuclear manganese product [Mn4O2O2CR)5(salpro)] (4Mn(III)). The syntheses, structure and magnetochemical characterization of these complexes are reported. The structure of the [Mn4(mu3-O)2]8+ is butterfly-like much more closed than in previous complexes with this core as a result of the alkoxide oxygen of the salpro ligand bridging the two wingtip Mn atoms. Variable-temperature, solid-state magnetic susceptibility studies reveal that these complexes possess S = 0 ground state spins. Fitting of the magnetic susceptibility data to the theoretical chiMT vs. T expression derived for a C2v symmetry complex, assuming an isotropic Heisenberg spin-Hamiltonian and using the Van Vleck equation, revealed that the various exchange parameters are all antiferromagnetic, and the core thus experiences spin frustration effects.  相似文献   

14.
Two new d-f cyanido-bridged 1D assemblies [RE(pzam)(3)(H(2)O)Mo(CN)(8)]·H(2)O (RE = Sm(III), Er(III)) were synthesized and their magneto-structural properties have been studied by field-dependent magnetization and specific heat measurements at low temperatures (≥0.3 K). Below ≈ 10 K the ground state of both the Sm(III) and Er(III) ions is found to be a Kramers doublet with effective spin S = 1/2. From analyses of the low-temperature magnetic specific heat and magnetization the exchange coupling between these RE(III) effective spins and the Mo(v) spins S = 1/2 along the structural chains has been determined. It is found to be antiferromagnetic, with J(∥)/k(B) = -2.6 K and Ising-Heisenberg symmetry of the interaction (J(∥)/J(⊥) = 0.3) for RE = Sm(III), whereas the compound with RE = Er(III) behaves as a pure XY chain, with J(⊥)/k(B) = -1.0 K. For the compound [Sm(pzam)(3)(H(2)O)Mo(CN)(8)]·H(2)O a small λ-type anomaly in the specific heat is observed at about 0.6 K, which is ascribed to a transition to long-range magnetic ordering induced by weak interchain interactions of dipolar origin. No evidence for 3D interchain magnetic ordering is found in the Er(III) analogue.  相似文献   

15.
Spin alignments in heterospin chains are examined from numerical calculations of model spin Hamiltonians. The Hamiltonians of the heterospin chains mimic an open-shell molecular assemblage composed of an organic biradical in a singlet (S = 0) ground state and a doublet (S = 1/2) monoradical, which are coupled by intermolecular ferromagnetic exchange interactions. It is found from numerical calculations of the spin Hamiltonians that the spin value S2 of the ground-state singlet biradical embedded in the exchange-coupled assemblage deviates from zero and contributes to the bulk magnetization. The alternating chain is found to have two kinds of ground spin states, a high- and a low-spin state. All the spins are parallel to each other in the high-spin state, which is characterized by the spin correlation function of (S(i).S(j)) = 0.25. On the other hand, the spin alignment in the low-spin state is found to be dependent on the topology of the intermolecular exchange interactions. The energy preference of the two states depends on the relative amplitude of the exchange interactions in the chain. The intermolecular ferromagnetic couplings are competing in the ground-state singlet biradical with the intramolecular antiferromagnetic interaction. The appearance of the two kinds of ground states is attributed to a quantum spin frustration effect inherent in the triangular motif of the competing interactions. Magnetic properties of a zigzag chain complex composed of a nitronyl nitroxide biradical with a singlet ground state and Cu(hfac)2 are examined on the basis of the theoretical calculations. The vanishing magnetic moments, or the product of susceptibility and temperature chiT, at low temperatures observed for the complex are consistent with those of the low-spin state predicted in the theoretical calculations.  相似文献   

16.
Herein, blue fluorescent carbogenic nanodots (CNDs) with room‐temperature ferromagnetism were synthesized by thermal decomposition of organic precursors at different temperatures. Photoluminescence (PL) studies show excitation‐wavelength‐dependent emission properties and PL excitation (PLE) studies confirm the triplet ground state of carbene at the zigzag edge as the fluorescent center. Room‐temperature magnetic studies reveal the ferromagnetic nature of CNDs and temperature‐dependent studies show the presence of an antiferromagnetic phase along with a ferromagnetic phase below 50 K. EPR studies reveal the presence of conduction electrons and localized spins with different g factors. Localized spins at zigzag edges are the origin of the unconventional magnetic behavior, whereas exchange coupling between conduction and localized spins are responsible for long‐range magnetic ordering.  相似文献   

17.
The ground-state of S = 1 kagome lattice antiferromagnets (KLAFs), in the presence of strong geometric frustration and the smallest integer spin, has the potential to host a range of non-trivial magnetic phases including a quantum spin liquid. The effect of local geometry and metal-ion electronic structure on the formation of these predicted phases remain unknown due to, in part, the lack of an ideal analyte. Herein, a kagome lattice compound, (CH3NH3)2NaV3F12 (1-V), featuring a single distinct V3+ (d2) site in the R3̄m space group, was synthesized hydrothermally. In this S = 1, d2 system, the trivalent vanadium ions are tetragonally compressed due to Jahn–Teller distortion. The interlayer methylammonium cations show static positional disorder with three possible orientations. The negative Curie–Weiss temperature and dominant antiferromagnetic interactions make 1-V a candidate to study S = 1 KLAF physics. The frequency-dependence of ac magnetic susceptibility and the heat capacity results suggest that 1-V has a spin glass ground state. This freezing of the spin dynamics may be due to competing exchange interactions, structural imperfection arising from the static disorder of the interlayer methylammonium cations or the presence of ‘defect’-like spins.

A new d2-vanadium-based KLAF, (CH3NH3)2NaV3F12, was synthesized hydrothermally and is a candidate to study S = 1 KLAF physics.  相似文献   

18.
The ground state electronic structure of the high-temperature (HT) and the low-temperature (LT) phases of (EDO-TTF)(2)PF(6) is investigated using the embedded cluster approach in combination with the density functional method designed to describe the strong non-dynamic electron correlation. It is found that, in the HT phase, the unpaired electron spins located on pairs of neighbouring EDO-TTF molecules are antiferromagnetically coupled along the stacking direction with the Heisenberg exchange integral J = -655 cm(-1). In the LT phase, the unpaired spins located on the cationic EDO-TTF molecules are coupled antiferromagnetically with J values strongly alternating along the stacking axis of the crystal thus rendering it diamagnetic. The parameters of the extended Hubbard model are evaluated and the conductance properties of the two phases are estimated using these parameters. It is suggested to investigate the charge and spin excitations in the two phases of (EDO-TTF)(2)PF(6) with the use of angle-resolved photoemission spectroscopy.  相似文献   

19.
On-surface metal-organic coordination provides a promising way for synthesizing different two-dimensional lattice structures that have been predicted to possess exotic electronic properties. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we studied the supramolecular self-assembly of 9,10-dicyanoanthracene (DCA) molecules on the Au(111) surface. Close-packed islands of DCA molecules and Au-DCA metal-organic coordination structures coexist on the Au(111) surface. Ordered DCA3Au2 metal-organic networks have a structure combining a honeycomb lattice of Au atoms with a kagome lattice of DCA molecules. Low-temperature STS experiments demonstrate the presence of a delocalized electronic state containing contributions from both the gold atom states and the lowest unoccupied molecular orbital of the DCA molecules. These findings are important for the future search of topological phases in metal-organic networks combining honeycomb and kagome lattices with strong spin-orbit coupling in heavy metal atoms.  相似文献   

20.
The electronic properties of the isostructural series of heterotrinuclear thiophenolate-bridged complexes of the general formula [LFeMFeL](n)(+) with M = Cr, Co and Fe where L represents the trianionic form of the ligand 1,4,7-tris(4-tertbutyl-2-mercaptobenzyl)-1,4,7-triazacyclononane, synthesized and investigated by a number of experimental techniques in the previous work(1), are subjected now to a theoretical analysis. The low-lying electronic excitations in these compounds are described within a minimal model supported by experiment and quantum chemistry calculations. It was found indeed that various experimental data concerning the magnetism and electron delocalization in the lowest states of all seven compounds are completely reproduced within a model which includes the electron transfer between magnetic orbitals at different metal centers and the electron repulsion in these orbitals (the Hubbard model). Moreover, due to the trigonal symmetry of the complexes, only the electron transfer between nondegenerate orbital, a(1), originating from the t(2g) shell of each metal ion in a pseudo-octahedral coordination, is relevant for the lowest states. An essential feature resulting from quantum chemistry calculations, allowing to explain the unusual magnetic properties of these compounds, is the surprisingly large value and, especially, the negative sign of the electron transfer between terminal iron ions, beta'. According to their electronic properties the series of complexes can be divided as follows: (1). The complexes [LFeFeFeL](3+) and [LFeCrFeL](3+) show localized valences in the ground electronic configuration. The strong antiferromagnetic exchange interaction and the resulting spin 1/2 of the ground-state arise from large values of the transfer parameters. (2). In the complex [LFeCrFeL](+), due to a higher energy of the magnetic orbital on the central Cr ion than on the terminal Fe ones, the spin 3/2 and the single unpaired a(1) electron are almost localized at the chromium center in the ground state. (3). The complex [LFeCoFeL](3+) has one ground electronic configuration in which two unpaired electrons are localized at terminal iron ions. The ground-state spin S = 1 arises from a kinetic mechanism involving the electron transfer between terminal iron ions as one of the steps. Such a mechanism, leading to a strong ferromagnetic interaction between distant spins, apparently has not been discussed before. (4). The complex [LFeFeFeL](2+) is characterized by both spin and charge degrees of freedom in the ground manifold. The stabilization of the total spin zero or one of the itinerant electrons depends on beta', i.e., corresponds to the observed S = 1 for its negative sign. This behavior does not fit into the double exchange model. (5). In [LFeCrFeL](2+) the delocalization of two itinerant holes in a(1) orbitals takes place over the magnetic core of chromium ion. Although the origin of the ground-state spin S = 2 is the spin dependent delocalization, the spectrum of the low-lying electronic states is again not of a double exchange type. (6). Finally, the complex [LFeCoFeL](2+) has the ground configuration corresponding to the electron delocalization between terminal iron atoms. The estimated magnitude of the corresponding electron transfer is smaller than the relaxation energy of the nuclear distortions induced by the electron localization at one of the centers, leading to vibronic valence trapping observed in this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号