首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoporous TiO2?xAy (A = N, S) thin films were fabricated using thiourea as a doping resource by a combination of sol-gel and evaporation-induced self-assembly (EISA) processes. The results showed that thiourea could serve two functions of co-doping nitrogen and sulfur and changing the mesoporous structure of TiO2 thin films. The resultant mesoporous TiO2?xAy (A = N, S) exhibited anatase framework with a high porosity and a narrow pore distribution. The formation of the O–Ti–N and O–Ti–S bonds in the mesoporous TiO2?xAy (A = N, S) were substantiated by the XPS spectra. A new bandgap in visible light region (520 nm) corresponding to 2.38 eV could be formed by the co-doping. After being illuminated for 3 h, methyl orange could be degraded nearly completely by the co-doped sample under both ultraviolet irradiation and visible light illumination. While pure mesoporous TiO2 could only degrade 60% methyl orange under UV illumination and showed negligible photodegradation capability in the visible light range. Furthermore, the photo-induced hydrophilic activity of TiO2 film was improved by the co-doping. The mesoporous microstructure and high visible light absorption could be attributed to their good photocatalytic acitivity and hydrophilicity.  相似文献   

2.
Characteristics of 2.45-GHz microwave radiation were examined on two second generation nitrogen-doped TiO2 nanomaterials prepared by annealing Degussa P-25 TiO2 and Ishihara ST-01 TiO2 at 400 °C and 500 °C, respectively, in air in the presence of urea, and for comparison on the undoped pristine samples. Band gaps of all four samples were determined by diffuse reflectance spectroscopy. Both the sizes and the BET specific surface areas of the TiO2 particles were determined, together with dielectric constants and dielectric loss factors. Nitrogen doping caused the size to increase and surface area to decrease. Temperature–time profiles showed that the heating efficiency of the N-doped specimens by the microwaves was greater, particularly significant for the N-doped P25 sample, but rather small for the N-ST01 sample. The effect of microwaves on the surface optical phonons of the samples, with and without UV–vis irradiation, was examined by an in situ Raman spectroscopic technique; for the undoped P-25 and nitrogen-doped N-P25 TiO2 systems the effect was negligible. By contrast, microwave irradiation of Ishihara ST-01 and nitrogen-doped N-ST01 TiO2 samples showed significant changes in the 144-cm?1 optical phonons. Results infer a microwave thermal effect on the Ishihara ST-01 and N-ST01 specimens, whereas for the Degussa P-25 samples the microwaves also imparted a specific effect as the microwaves influenced the N-dopant sites in contrast to the ST-01 systems where the dopant sites were unaffected as evidenced by temperature–time profiles. The microwave-/photo-assisted degradation of 4-chlorophenol under various conditions of UV–vis irradiation and conventional heating, as opposed to microwave heating, confirms the specific microwave effect for the P-25 systems.  相似文献   

3.
TiO2 thin film photocatalysts which could induce photoreactions under visible light irradiation were successfully developed in a single process by applying an ion engineering technique, i.e., the radio frequency (RF) magnetron sputtering deposition method. The TiO2 thin films prepared at temperatures greater than 773 K showed the efficient absorption of visible light; on the other hand, the TiO2 thin films prepared at around 573 K were highly transparent. This clearly means that the optical properties of TiO2 thin films, which absorb not only UV but also visible light, can be controlled by the preparation temperatures of the RF magnetron sputtering deposition method. These visible light responsive TiO2 thin films were found to exhibit effective photocatalytic reactivity under visible light irradiation (λ > 450 nm) at 275 K for the reductive decomposition of NO into N2 and N2O. From various characterizations, the orderly aligned columnar TiO2 crystals could be observed only for the visible light responsive TiO2 thin films. This unique structural factor is expected to modify the electronic properties of a TiO2 semiconductor, enabling the efficient absorption of visible light.  相似文献   

4.
CaAl2O4:(Eu,Nd)/rutile phase TiO2?x N y composites were synthesized via a two-step method, i.e. a solvothermal reaction followed by a mechanochemical treatment. The photocatalytic deNO x activity of the composites was evaluated under UV light (λ > 290 nm) irradiation and after turning off the UV light. It was confirmed that rutile phase TiO2?x N y nanoparticles could be uniformly dispersed on the surface of CaAl2O4:(Eu,Nd) after planetary ball milling treatment. The composites prepared by this two-step method had high photocatalytic activity and good prolonged catalysis time even after turning off the light.  相似文献   

5.
Using a new nitrogen precursor of a mixture of ammonia and hydrazine hydrate, N-doped TiO2 photocatalyst with a high efficiency under visible light was synthesized by a precipitation method. The analysis of X-ray photoelectron spectroscopy (XPS) suggested that the doping concentration of nitrogen was 0.45 at%, while it was 0.21 at% or 0.24 at% using single ammonia or hydrazine hydrate as nitrogen precursor. The patterns of the electron paramagnetic resonance spectroscopy (EPR) indicated that the paramagnetic species of NO22?, NO and Ti3+ existed as the proposed active species. The ultraviolet–visible (UV–vis) spectra revealed that the band-gap of the N-doped TiO2 was 3.12 eV, which was slightly lower than 3.15 eV of pure TiO2. The N-doped TiO2 showed higher efficiency under both ultraviolet (UV) and visible light irradiations. Moreover, the degradation grade of 4-chlorophenol (4-CP) using the as-synthesized N-doped TiO2 under sunlight irradiation for 6 h was 82.0%, which was higher than 66.2% of the pure TiO2, 60.1% or 65.2% of the N-doped TiO2 using single ammonia or hydrazine hydrate as precursor. Density functional theory (DFT) calculations were performed to investigate the visible light response of the N-doped TiO2. Our study demonstrated that the visible activities vary well with the concentrations of NO22? species incorporated by N–TiO2 series photocatalysts and the higher activity of the as-prepared N-doped TiO2 was attributed to the enhancement of the concentration of NO22? species.  相似文献   

6.
Nitrogen substituted yellow colored anatase TiO2−xNx and Fe-N co-doped Ti1−yFeyO2−xNx have been easily synthesized by novel hydrazine method. White anatase TiO2−δ and N/Fe-N-doped samples are semiconducting and the presence of ESR signals at g ∼1.994-2.0025 supports the oxygen vacancy and g∼4.3 indicates Fe3+ in the lattice. TiO2−xNx has higher conductivity than TiO2−x and Fe/Fe-N-doped anatase and the UV absorption edge of white TiO2−x extends in the visible region in N, Fe and Fe-N co-doped TiO2, which show, respectively, two band gaps at ∼3.25/2.63, ∼3.31/2.44 and 2.8/2.44 eV. An activation energy of ∼1.8 eV is observed in Arrhenius log resistivity vs. 1/T plots for all samples. All TiO2 and Fe-doped TiO2 show low 2-propanol photodegradation activity but have significant NO photodestruction capability, both in UV and visible regions, while standard Degussa P-25 is incapable in destroying NO in the visible region The mid-gap levels that these N and Fe-N-doped TiO2 consist may cause this discrepancy in their photocatalytic activities.  相似文献   

7.
《Comptes Rendus Chimie》2015,18(10):1170-1182
Photocatalytic degradation of phenol under both UV radiation and visible light, using TiO2 (Degussa P-25) and TiO2 loaded with some transition metal ions (Co, Cu, Fe and Mo) was examined. From the series of metal loaded catalysts, Mo/TiO2 was the most efficient one. In the presence of Mo, neither TiO2 anatase/rutile fraction nor its pore size diameter has been affected. However, Mo made its surface more acidic. The percentage of phenol degradation reached under visible light was significantly lower than that under UV radiation due to the lower degree of light absorption by the catalyst surface. From the series of studied catalysts, 2 wt% Mo/TiO2 was the most efficient one. The synergetic effect between SBET, mean pore size diameter, catalyst agglomerate size, band gap, ZPC and the type of MoxOy species on TiO2 surface, depending on Mo loading, created its photocatalytic performance.  相似文献   

8.
A visible light-driven Bi2O3–TiO2 composite photocatalyst was prepared by an ethylene glycol-assisted sol–gel method in which ethylene glycol acted as a polycondensation agent to capture metal ions by reacting with bismuth and titanium sources via a complex polycondensation pathway. The photocatalyst was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, acquisition of N2 adsorption–desorption isotherms, transmission electron microscopy, and UV–visible diffuse reflectance spectroscopy. The results revealed that the Bi2O3–TiO2 composite was of smaller particle size, greater specific surface area, and had stronger absorbance in the visible light region than pure TiO2. The photocatalytic activity of the as-prepared catalyst was evaluated by degradation of rhodamine B under visible light irradiation (λ > 400 nm); the as-prepared Bi2O3–TiO2 composite was substantially more active than pure TiO2. This was ascribed to the high surface area and the heterojunction structure.  相似文献   

9.
Amorphous precursors to nitrogen-doped TiO2 (NTP) and pure TiO2 (ATP) powders were synthesized by hydrolytic synthesis and sol-gel method (SGM), respectively. Corresponding crystalline phases were obtained by thermally induced transformation of these amorphous powders. From FT-IR and XPS data, it was concluded that a complex containing titanium and ammonia was formed in the precipitate stage while calcination drove weakly adsorbed ammonium species off the surface, decomposed ammonia bound on surface of precipitated powder and led to substitution of nitrogen atom into the lattice of TiO2 during the crystallization. The activation energies required for grain growth in amorphous TiO2−xNx and TiO2 samples were determined to be 1.6 and 1.7 kJ/mol, respectively. Those required for the phase transformation from amorphous to crystalline TiO2−xNx and TiO2 were determined to be 129 and 142 kJ/mol, respectively. A relatively low temperature was required for the phase transformation in NTP sample than in ATP sample. The fabricated N-doped TiO2 photocatalyst absorbed the visible light showing two absorption edges; one in UV range due to titanium oxide as the main edge and the other due to nitrogen doping as a small shoulder. TiO2−xNx photocatalyst demonstrated its photoactivity for photocurrent generation and decomposition of 2-propanol (IPA) under visible light irradiation ().  相似文献   

10.
Nanosized cerium and nitrogen co-doped TiO2 (Ce–TiO2?xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N2 adsorption and desorption methods, photoluminescence and ultraviolet–visible (UV–vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in ?3 state in Ce–TiO2?xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce–O–Ti interface and also inhibits Ce particles from sintering. UV–visible DRS studies show that the metal–metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ → Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron–hole pair separation between the two interfaces Ce–TiO2?xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce–TiO2?xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce–TiO2?xNx was due to the participation of MMCT and interfacial charge transfer mechanism.  相似文献   

11.
Boron-doped TiO2 was prepared by the sol-gel method and by grinding TiO2 powder with a boron compounds (boric acid and boric acid triethyl ester followed by calcinations at temperature range 200 to 600°C. Three types of pristine TiO2: ST-01 (Ishihara Sangyo Ltd., Japan; 300 m2/g), P25 (Degussa, Germany, 50 m2/g), A11 (Police S.A., Poland 12 m2/g) were used in grinding procedure. The photocatalytic activity of obtained powders in visible light was estimated by measuring the decomposition rate of phenol (0.21 mmol/dm3) in an aqueous solution. The photocatalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron emission spectroscopy (XPS), UV-VIS absorption and BET surface area measurements. The best photoactivity under visible light was observed for B-TiO2 modified with 2 wt% of boron prepared by grinding ST-01 with dopant followed by calcinations at 400°C. This photocatalyst contains 16.9 at.% of carbon and 6.6 at.% of boron in surface layer and its surface area is 192 m2/g.  相似文献   

12.
Cu and N-doped TiO2 photocatalysts were synthesized from titanium (IV) isopropoxide via a microwave-assisted sol-gel method. The synthesized materials were characterized by X-ray diffraction, UV-vis diffuse reflectance, photoluminescence (PL) spectroscopy, SEM, TEM, FT-IR, Raman spectroscopy, photocurrent measurement technique, and nitrogen adsorption–desorption isotherms. Raman spectra and XRD showed an anatase phase structure. The SEM and TEM images revealed the formation of an almost spheroid mono disperse TiO2 with particle sizes in the range of 9-17 nm. Analysis of N2 isotherm measurements showed that all investigated TiO2 samples have mesoporous structures with high surface areas. The optical absorption edge for the doped TiO2 was significantly shifted to the visible light region. The photocurrent and photocatalytic activity of pure and doped TiO2 were evaluated with the degradation of methyl orange (MO) and methylene blue (MB) solution under both UV and visible light illumination. The doped TiO2 nanoparticles exhibit higher catalytic activity under each of visible light and UV irradiation in contrast to pure TiO2. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of the titania in the following order: (Cu, N) - codoped TiO2 > N-doped TiO2 > Cu-doped TiO2 > TiO2. COD result for (Cu, N)-codoped TiO2 reveals ∼92% mineralization of the MO dye on six h of visible light irradiation.  相似文献   

13.
Homogeneous titanium nitride (TiN) thin film was produced by simple electrophoreic deposition process on Ti substrate in an aqueous suspension of nanosized TiN powder. Nitrogen-doped titanium dioxide (TiO2−xNx) was synthesized by oxidative annealing the resulted TiN thin film in air. Photoelectrochemical measurements demonstrated visible light photoresponse for the electrode of annealed electrophoreic deposited TiN samples. It is found that the synthesized TiO2−xNx electrode showed higher photo potential under white and visible light illumination than the pure TiO2 electrode. The photocurrent under visible light illumination was also observed, which increased with the increase of deposition time of TiN thin films.  相似文献   

14.
采用机械球磨法制备Y~(3+)修饰TiO_2光催化剂,利用紫外-可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)、X射线粉末衍射(XRD)、扫描电镜(SEM)等对其进行表征,在紫外光下,以亚甲基蓝(MB)为去除物来考察催化剂活性并优化球磨工艺。将最佳条件下制得的Y~(3+)/TiO_2光催化剂负载于不同半径的塑料浮球上,分别在紫外光和模拟太阳光照射下处理海水养虾废水,通过CODCr(chemical oxygen demand)及三维荧光观察有机物含量变化。结果表明,当Y~(3+)的物质的量分数为2%,球磨时间4 h,球料质量比4∶1,转速为500 r·min~(-1)时,MB光催化降解反应速率常数可达0.111 3 min~(-1),是纯TiO 2的4.2倍。由UV-Vis DRS、XPS、N_2吸附-脱附、XRD、SEM等表征结果显示,2%Y~(3+)/TiO_2样品的禁带宽度降低至3.05 eV,光吸收发生红移,并产生可见光响应,表面吸附氧含量明显增加,比表面积增大到104 m~2·g~(-1)。采用纯TiO_2及2%Y~(3+)/TiO_2为光催化剂处理养虾废水,在可见光和紫外光下CODCr的去除率分别为14.7%和18.8%、26.9%和37.5%。考察3种直径分别为1、2、3 cm负载Y~(3+)/TiO_2浮球的光催化效果,显示直径为2 cm浮球效果最佳,CODCr去除率可达38.5%。  相似文献   

15.
The photocatalytic degradation for some kinds of dye-constituent aromatics with TiO2 in the presence of phosphate anions in aqueous dispersion was investigated under both visible light (λ>480 nm) and UV irradiation. The influences of phosphate anion upon the degradation of organics under these different conditions was revealed by the measurement of point of zero ξ-potential (P ZC) of TiO2, UV-VIS spectra, HPLC and LC-MS. The adsorption and photodegradation of some organics, which adsorb on the surface of TiO2 by a dominating group bearing a positive charge, was enhanced, while that of others, which adsorb on the surface of TiO2 by a dominating group bearing negative charge, was depressed by the presence of phosphate anions under UV irradiation at the experimental conditions (pH 4.3). It was confirmed that better adsorption of organics on the surface of TiO2 had an advantage in their photocatalytic degradation under UV irradiation. On the other hand, although the adsorption of rhodamine B (RhB) and methylene Blue (MB) markedly increased, their degradation under visible light irradiation was depressed in the presence of phosphate anions. It is suggested that phosphate anion greatly blocked the electron transfer from excited RhB and MB molecules as RhB and MB molecules predominantly adsorbed on the surface of TiO2 through the electrostatic interaction with surface adsorbed phosphate anions.  相似文献   

16.
Cr-doped SrTi1−xCrxO3 (x=0.00, 0.02, 0.05, 0.10) powders, prepared by solvothermal method, were further characterized by ultraviolet-visible (UV-vis) absorption spectroscopy. The UV-vis spectra indicate that the SrTi1−xCrxO3 powders can absorb not only UV light like pure SrTiO3 powder but also the visible-light spectrum (λ>420 nm). The results of density functional theory (DFT) calculation illuminate that the visible-light absorption bands in the SrTi1−xCrxO3 catalyst are attributed to the band transition from the Cr 3d to the Cr 3d+Ti 3d hybrid orbital. The photocatalytic activities of chromium-doped SrTiO3 both under UV and visible light are increased with the increase in the amounts of chromium.  相似文献   

17.
In this study, we report the synthesis of hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods photocatalyst on a large scale via a soft interface approach. This catalyst showed much higher photocatalytic activity than the famous commercial titania (Degussa P25) under visible light (λ>420 nm). The resulting sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy, 1H solid magic-angle spinning nuclear magnetic resonance (MAS-NMR) and photoluminescence spectroscopy. On the basis of characterization results, we found that the doping of chlorine resulted in red shift of absorption and higher surface acidity as well as crystal defects in the photocatalyst, which were the reasons for high photocatalytic activity of chlorine-doped TiO2 under visible light (λ>420 nm). These hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods are very attractive in the fields of environmental pollutants removal and solar cell because of their easy separation and high activity.  相似文献   

18.
We describe a method tuning the band-gap energy (Eg) of visible light sensitive TiO2-xCx nanoparticle. Eg tends to become smaller with the increase in the amount of carbon dopant in TiO2-xCx nanoparticle due to the increase in excess electrons. Photo-catalytic oxidative activity, however, did not depend on only the value of Eg, but also the energy level of valence band. TiO1.96C0.04 nanoparticle having Eg of 2.6 eV showed outstanding performance in oxidative decomposition of phenol under the irradiation of visible light.  相似文献   

19.
Bi-layer WO3–TiO2 coatings have been synthesised on stainless steel (SS) substrates by consecutive cathodic electrodeposition of WO3 (from peroxytungstate solutions) and TiO2 electrosynthesis (from titanium oxosulfate solutions). The resulting TiO2–WO3/SS photoelectrodes have been screened for their photoresponse under ultraviolet (UV) and visible (vis) light illumination by photovoltammetry in supporting electrolyte (sodium sulfate) and malachite green (a typical dye) solutions. They were also evaluated for malachite green photooxidation during constant potential bulk photoelectrolysis. It was found that both photocurrent values and dye removal rates were higher at TiO2–WO3/SS than at plain WO3/SS photoelectrodes, under both UV and vis illumination (up to 85% and 67% malachite green degradation has been achieved respectively from its 10 ppm solutions after 2 h). The enhancement of the UV and, as reported here for the first time, vis photocatalytic activity of WO3 by the inclusion of TiO2 is interpreted by reduced electron-hole recombination rates due to electron transfer from TiO2 to WO3 (during UV activation) and hole transfer from WO3 to TiO2 (during UV and vis light activation).  相似文献   

20.
《Polyhedron》1987,6(5):1009-1015
Reactions of 2-mercapto-3-phenyl-4-quinazolinone (LH) with RuCl3·xH2O and RhCl3·xH2O afforded the compounds [RuL2Cl(H2O)]H2O, [RuL2Cl·DMFI and RhL(LH)Cl2·2H2O. Reactions of LH with RuCl3·xH2O in the presence of N-heterocyclic bases led to the formation of complexes of type [RuL2ClB]·H2O (B = pyridine, 3-picoline or imidazole) and [RuLCl2(o-phen)] H2O (o-phen = 1, 10-phenanthroline). These complexes were characterized on the basis of analytical, conductivity, magnetic, IR and electronic spectral and ESR studies. Tentative structures for the complexes are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号