首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The authors analyze the long-time self-diffusion of charge-stabilized colloidal macroions in nondilute suspensions using a mode-coupling scheme developed for multicomponent suspensions of interacting Brownian spheres. In this scheme, all ionic species, including counterions and electrolyte ions, are treated on an equal footing as charged hard spheres undergoing overdamped Brownian motion. Hydrodynamic interactions between all ions are accounted for on the far-field level. We show that the influence on the colloidal long-time self-diffusion coefficient arising from the relaxation of the microionic atmosphere surrounding the colloids, the so-called electrolyte friction effect, is usually insignificant in comparison with the friction contributions arising from direct and hydrodynamic interactions between the colloidal particles. This finding is true even for small colloid concentrations unless the mobility difference between colloidal particles and microions is not large. Furthermore, we observe an interesting nonmonotonic density dependence of the colloidal long-time self-diffusion coefficient in suspensions with low amount of added salt. We show that this unusual density dependence is due to colloid-colloid hydrodynamic interactions.  相似文献   

2.
By using a classical density functional theory (interfacial statistical associating fluid theory), we investigate the structure and effective forces in nonadsorbing polymer-colloid mixtures. The theory is tested under a wide range of conditions and performs very well in comparison to simulation data. A comprehensive study is conducted characterizing the role of polymer concentration, particle/polymer-segment size ratio, and polymer chain length on the structure, polymer induced depletion forces, and the colloid-colloid osmotic second virial coefficient. The theory correctly captures a depletion layer on two different length scales, one on the order of the segment diameter (semidilute regime) and the other on the order of the polymer radius of gyration (dilute regime). The particle/polymer-segment size ratio is demonstrated to play a significant role on the polymer structure near the particle surface at low polymer concentrations, but this effect diminishes at higher polymer concentrations. Results for the polymer-mediated mean force between colloidal particles show that increasing the concentration of the polymer solution encourages particle-particle attraction, while decreasing the range of depletion attraction. At intermediate to high concentrations, depletion attraction can be coupled to a midrange repulsion, especially for colloids in solutions of short chains. Colloid-colloid second virial coefficient calculations indicate that the net repulsion between colloids at low polymer densities gives way to net attraction at higher densities, in agreement with available simulation data. Furthermore, the results indicate a higher tendency toward colloidal aggregation for larger colloids in solutions of longer chains.  相似文献   

3.
A generalized model has been proposed to describe the stability of polymer colloids stabilized with ionic surfactants by accounting simultaneously for the interactions among three important physicochemical processes: colloidal interactions, surfactant adsorption equilibrium, and association equilibria of surface charge groups with counterions at the particle-liquid interface. A few Fuchs stability ratio values, determined experimentally for various salt types and concentrations through measurements of the doublet formation kinetics, are used to estimate the model parameters, such as the surfactant adsorption and counterion association parameters. With the estimated model parameters, the generalized model allows one to monitor the dynamics of surfactant partitioning between the particle surface and the disperse medium, to analyze the variation of surface charge density and potential as a function of the electrolyte type and concentration, and to predict the critical coagulant concentration for fast coagulation. Three fluorinated polymer colloids, stabilized by perfluoropolyether-based carboxylate surfactant, have been used to demonstrate the feasibility of the proposed colloidal stability model.  相似文献   

4.
Approaches to hydration, old and new: Insights through Hofmeister effects   总被引:1,自引:0,他引:1  
Hydration effects in colloidal interactions or problems involving electrolytes are usually taken care of by effective electrostatic potentials that subsume notions like hydrated ion size, Gurney potentials, soft and hard, chaotropic and cosmotropic ions, and inner and outer Helmholtz planes. Quantum fluctuation (dispersion) forces between ions and between ions and surfaces are missing from classical theories, at least not explicit in standard approaches to hydration. This paper outlines an evolving back-to-basics approach that allows these ion specific forces to be included in theories quantitatively. In this approach ab initio quantum mechanics is used to calculate dynamic polarisabilities of ions and to quantify bare ion radii. The ionic dispersion potentials between ions, and between ions and surfaces in water can then be given explicit analytic form from an extension of Lifshitz theory. They are included in the theory along with electrostatic potentials. In a first stage the primitive (continuum solvent) model provides a skeletal theory on which to build in hydration. Extension of the ab initio calculations to include “dressed” ions, i.e. water hydration shells for cosmotropic ions, quadrupolar and octupolar polarisability contributions and; for colloids, allowance for a surface hydration layer, permits quantification of Hofmeister effects and Gurney potentials. With these extensions, primary hydration forces (short range repulsion) arise due to an interplay between surface hydration layers and specific ion interactions. Apparent longer range “secondary hydration forces” are shown to be a consequence of ion-surface dispersion interactions and are not true “hydration forces”.  相似文献   

5.
The effective interaction between two colloidal particles in a bath of monovalent co- and counterions is studied by means of lattice Monte Carlo simulations with the primitive model. The internal electrostatic energy as a function of the colloid distance is studied fixing the position of the colloids. The free energy of the whole system is obtained introducing a bias parabolic potential, that allows us to sample efficiently small separations between the colloidal particles. For small charges, both the internal and free energy increase when the colloids approach each other, resulting in an effective repulsion driven by the electrostatic repulsion. When the colloidal charge is large enough, on the other hand, the colloid-ion coupling is strong enough to form double layers. The internal energy in this case decreases upon approaching the colloids because more ions enter the double layer. This attractive contribution to the interaction between the colloids is stronger for larger charges and larger ionic concentrations. However, the total free energy increases due to the loss of ionic entropy, and resulting finally in a repulsive interaction potential driven by the entropic contributions. The loss of ionic entropy can be almost quantitatively reproduced with the ideal contribution, the same level of approximation as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The overall behavior is captured by the DLVO theory qualitatively, and a comparison is made with the functional form predicted by the theory, showing moderate agreement.  相似文献   

6.
The pair‐correlation functions for fluid ionic mixtures in arbitrary spatial dimensions are computed in hypernetted chain (HNC) approximation. In the primitive model (PM), all ions are approximated as nonoverlapping hyperspheres with Coulomb interactions. Our spectral HNC solver is based on a Fourier‐Bessel transform introduced by Talman (J. Comput. Phys. 1978, 29, 35), with logarithmically spaced computational grids. Numeric efficiency for arbitrary spatial dimensions is a commonly exploited virtue of this transform method. Here, we highlight another advantage of logarithmic grids, consisting in efficient sampling of pair‐correlation functions for highly asymmetric ionic mixtures. For three‐dimensional fluids, ion size and charge‐ratios larger than 1000 can be treated, corresponding to hitherto computationally not accessed micrometer‐sized colloidal spheres in 1‐1 electrolyte. Effective colloidal charge numbers are extracted from our PM results. For moderately large ion size and charge‐asymmetries, we present molecular dynamics simulation results that agree well with the approximate HNC pair correlations. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
We study the rheology of model colloidal suspensions using molecular-dynamics simulations. We relate the onset of shear thickening to the transition from a low-viscosity regime, in which the solvent facilitates the flow of colloids, to a high-viscosity regime associated with jamming of the colloids and the formation of chains of colloids. In the low-viscosity regime, the colloidal particles are, on average, surrounded by two layers of solvent particles. On the contrary, in the high-viscosity regime, the solvent is expelled from the interstice between the jammed colloids. The thickening in suspensions is shown to obey the same criterion as in simple fluids. This demonstrates that jamming, even without the divergence of lubrication interactions, is sufficient to observe shear thickening.  相似文献   

8.
Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.  相似文献   

9.
10.
The interactions between proteins and gold colloids functionalized with protein-resistant oligo(ethylene glycol) (OEG) thiol, HS(CH2)11(OCH2CH2)6OMe (EG6OMe), in aqueous solution have been studied by small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. The mean size, 2R, and the size distribution of the decorated gold colloids have been characterized by SAXS. The monolayer-protected gold colloids have no correlations due to the low volume fraction in solution and are stable in a wide range of temperatures (5-70 degrees C), pH (1.3-12.4), and ionic strength (0-1.0 M). In contrast, protein (bovine serum albumin) solutions with concentrations in the range of 60-200 mg/mL (4.6-14.5 vol %) show a pronounced correlation peak in SAXS, which results from the repulsive electrostatic interaction between charged proteins. These protein interactions show significant dependence on ionic strength, as would be expected for an electrostatic interaction (Zhang et al. J. Phys. Chem. B 2007, 111, 251). For a mixture of proteins and gold colloids, the protein-protein interaction changes little upon mixing with OEG-decorated gold colloids. In contrast, the colloid-colloid interaction is found to be strongly dependent on the protein concentration and the size of the colloid itself. Adding protein to a colloidal solution results in an attractive depletion interaction between functionalized gold colloids, and above a critical protein concentration, c*, the colloids form aggregates and flocculate. Adding salt to such mixtures enhances the depletion effect and decreases the critical protein concentration. The aggregation is a reversible process (i.e., diluting the solution leads to dissolution of aggregates). The results also indicate that the charge of the OEG self-assembled monolayer at a curved interface has a rather limited effect on the colloidal stabilization and the repulsive interaction with proteins.  相似文献   

11.
肽基超分子胶体是基于肽分子间超分子作用,自发形成且具有有序分子排布及规整结构,兼具传统胶体及超分子特性的组装体系。利用超分子弱相互作用构筑功能性胶体,不仅是人们对生命组装进程深入理解的有效手段,也是实现优异的超分子材料的重要途径。肽分子具有组成明确、性能可调、生物安全性高及可降解等优势,是超分子化学、胶体与界面化学领域重要的组装基元。基于肽的超分子自组装,能够实现多尺度、多功能的生物胶体的构筑,被广泛应用于医药、催化、能源等领域。如何通过对肽序列的设计及分子间作用力的调控,实现对胶体结构和功能的精确控制,是近年来研究的重要课题之一。从分子尺度研究和揭示超分子胶体的组装过程及物理化学机制,探究胶体结构与功能的关系,是实现超分子结构和功能化的重要内容。本文基于"分子间作用的调控"及"结构与功能的关系"两个基本科学问题,系统地综述了肽基超分子胶体的组装机制、结构与功能,以及研究现状。  相似文献   

12.
We investigate the effect of small concentrations of highly charged nanoparticles on the stability of uncharged colloidal microspheres using large-scale simulations. Employing pair potentials that accurately represent mixtures of silica microspheres and polystyrene nanoparticles as studied experimentally, we are able to demonstrate that nanoparticle-induced stabilization can arise from a relatively weak van der Waals attraction between the colloids and nanoparticles. This demonstrates that the nanoparticle haloing mechanism for colloidal stabilization is of considerable generality and potentially can be applied to large classes of systems. The range of optimal nanoparticle concentrations can be tuned by controlling the attraction between colloids and nanoparticles.  相似文献   

13.
Summary: We consider an assembly of colloidal particles, which are immersed in a binary mixture of polymers. At temperatures close to the critical point of the free mixture, the fluctuations of the composition induce a critical Casimir force between colloids. This force naturally depends on their distance and it is responsible for the colloidal aggregation. In this paper, we propose to study the kinetics of such a transition leading colloids from a dispersed phase (gas) to a dense one (liquid). This kinetics is studied through the relaxation rate, which is a function of the transfer wave-vector.  相似文献   

14.
Effective pair potentials between charged colloids, obtained from Monte Carlo simulations of two single colloids in a closed cell at the primitive model level, are shown to reproduce accurately the structure of aqueous salt-free colloidal dispersions, as determined from full primitive model simulations by Linse et al. (Linse, P.; Lobaskin, V. Electrostatic Attraction and Phase Separation in Solutions of Like-Charged Colloidal Particles. Phys. Rev. Lett.1999, 83, 4208). Excellent agreement is obtained even when ion-ion correlations are important and is in principle not limited to spherical particles, providing a potential route to coarse-grained colloidal interactions in more complex systems.  相似文献   

15.
We present a density functional theory study of colloidal interactions in a concentrated polymer solution. The colloids are modeled as hard spheres and polymers are modeled as freely jointed tangent hard sphere chains. Our theoretical results for the polymer-mediated mean force between two dilute colloids are compared with recent simulation data for this model. Theory is shown to be in good agreement with simulation. We compute the colloid-colloid potential of mean force and the second virial coefficient, and analyze the behavior of these quantities as a function of the polymer solution density, the polymer chain length, and the colloid/polymer bead size ratio.  相似文献   

16.
We use decorated-lattice models to explore the phase behavior of two types of DNA-linked colloidal mixtures: systems with identical nanoparticles functionalized with two different DNA strands (mixture Aab) and mixtures involving two types of particles each one functionalized with a different DNA strand (mixture Aa-Ab). The model allows us to derive the properties of the mixtures from the well-known behavior of underlying spin-n Ising models with temperature and activity dependent effective interactions. The predicted evolution of the dissolution profiles for the colloidal assemblies as a function of temperature and number of single DNA strands on a nanoparticle M is in qualitative agreement with that observed in real systems. According to our model, the temperature at which the assemblies dissolve can be expected to increase with increasing M only for concentrations of colloids below a certain threshold. For more concentrated solutions, the dissolution temperature is a decreasing function of M. Linker-mediated interactions between Aa and Ab particles in the Aa-Ab mixture render the phase separation involving disordered aggregates metastable with respect to a phase transition between a solvent-rich and an ordered phase. The stability of the DNA-linked assembly is enhanced by the ordering of the colloidal network and the ordered aggregates dissolve at higher temperatures. Our results may explain the contrasting evolution of the dissolution temperatures with increasing probe size in Aab and Aa-Ab mixtures as observed experimentally.  相似文献   

17.
We consider mixtures of self-avoiding multiarm star polymers with hard colloids that are smaller than the star polymer size. By employing computer simulations, and by extending previous theoretical approaches, developed for the opposite limit of small star polymers [A. Jusufi et al., J. Phys.: Condens. Matter 13, 6177 (2001)], we coarse-grain the mixture by deriving an effective cross-interaction between the unlike species. The excellent agreement between theory and simulation for all size ratios examined demonstrates that the theoretical approaches developed for the colloidal limit can be successfully modified to maintain their validity also for the present case of the protein limit, in contrast to the situation for mixtures of colloids and linear polymers. We further analyze, on the basis of the derived interactions, the non-additivity parameter of the mixture as a function of size ratio and star functionality and delineate the regions in which we expect mixing as opposed to demixing behavior. Our results are relevant for the study of star-colloid nanocomposites and pave the way for further investigations of the structure and thermodynamics of the same.  相似文献   

18.
We investigate the combined effects of gravity, attractive interactions, and brownian motion in suspensions of colloidal particles and nonadsorbing polymer. Depending on the effective strength of gravitational forces, resulting from a density mismatch between the colloids and the solvent, and the magnitude and range of the depletion interactions induced by the polymer, sedimentation in these suspensions can result in an equilibrium structure or a kinetically arrested state. We employ large-scale molecular dynamics simulations to systematically classify the different regimes that arise as a function of attraction strength and gravitational stress. Whereas strong attractions lead to cluster aggregation and low-density arrested states, moderate attractions can enhance crystallization of the colloidal particles in the sediment. We make direct comparisons to experimental results to infer general conclusions about the mechanisms leading to mechanically stable sediments.  相似文献   

19.
A combined experimental and multiscale simulation study of the influence of polymer brush modification on interactions of colloidal particles and rheological properties of dense colloidal suspensions has been conducted. Our colloidal suspension is comprised of polydisperse MgO colloidal particles modified with poly(ethylene oxide) (PEO) brushes in water. The shear stress as a function of shear rate was determined experimentally and from multiscale simulations for a suspension of 0.48 volume fraction colloids at room temperature for both bare and PEO-modified MgO colloids. Bare MgO particles exhibited strong shear thinning behavior and a yield stress on the order of several Pascals in both experiments and simulations. In contrast, simulations of PEO-modified colloids revealed no significant yielding or shear thinning and viscosity only a few times larger than solvent viscosity. This behavior is inconsistent with results obtained from experiments where modification of colloids with PEO brushes formed by adsorption of PEO-based comb-branched chains resulted in relatively little change in suspension rheology compared to bare colloids over the range of concentration of comb-branch additives investigated. We attribute this discrepancy in rheological properties between simulation and experiment for PEO-modified colloidal suspensions to heterogeneous adsorption of the comb-branch polymers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号