首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The pattern transfer mechanism of an alkanethiol self-assembled monolayer (SAM) with different chain lengths during the dip-pen nanolithography (DPN) process and pattern characterizations are studied using molecular dynamics (MD) simulations. The mechanisms of molecular transference, alkanethiol meniscus characteristics, surface adsorbed energy, transfer number, and pattern formation are evaluated during the DPN process at room temperature. The simulation results clearly show that the molecular transfer ability in DPN is strongly dependent on the chain length. Shorter molecules have significantly better transport and diffusion abilities between the meniscus and substrate surface, and the transport period can be maintained longer. The magnitude of adsorbed energy increases with chain length, so many more molecules can be transferred to the surface when shorter molecules are used. After deposition, the magnitude of the adsorbed area and pattern height decrease with increasing chain length.  相似文献   

2.
马定洋  章林溪 《高分子学报》2008,(11):1055-1060
采用相互作用自回避行走(interacting self-avoiding walks,ISAWS)模型研究了一端固定的紧密高分子链在拉伸过程中的低温相变行为,观察到在拉伸过程中当温度T<0.1时平均拉力会出现一个震荡,随着温度的升高这种震荡现象又渐渐消失,这是由于紧密高分子链在低温时类似于β折叠的"冻结构象"被拉开而引起的.比较吸附条件下和无吸附作用下平均拉力、自由能以及相变行为的差别,发现在吸附条件下在拉伸的初始阶段为了克服表面吸附的相互作用,拉力会出现一个峰.吸附作用也使得外界作用到高分子链上的实际有效拉力减小,造成崩塌相态(collapsed phase)区域面积减少.另外发现在吸附条件下平均拉力还受温度变化的影响.在拉伸的初期由于单体间存在体积排除效应,平均拉力是随着温度的升高而降低,随着拉伸的深入当末端距到达一定长度时平均拉力是随着温度的升高而增加.并同Kumar等人在不考虑吸附作用下拉伸紧密高分子链得到的结果进行了比较.这些研究对于进一步研究外力诱导下吸附紧密高分子的相变有一定的参考价值.  相似文献   

3.
Two types of energy transfer in pi-conjugated polymers have been investigated using time-resolved photoluminescence (PL) techniques: type i, perpendicular-type energy transfer from the 2,3-di(p-tolyl)quinoxaline unit to the pi-conjugated main chain of poly[2,3-di(p-tolyl)quinoxaline-5,8-diyl], and type ii, parallel-type energy transfer from the oligo(pyridine-2,5-diyl) (O-Py) unit to the oligo(selenophene-2,5-diyl) (O-Se) unit in a block-type copolymer of O-Py and O-Se. Both types of energy transfer were very fast with a time constant shorter than approximately 0.1 ns; in particular, the type ii energy transfer took place with a time constant of approximately 5 ps. Both pi-conjugated polymers were considered to contain segments with various effective pi-conjugation lengths, and the energy transfer to the segment with a larger effective pi-conjugation length and a smaller pi-pi* transition energy required a longer transition time. A polarizing film was obtained by utilizing the perpendicular-type energy transfer.  相似文献   

4.
A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The surface property of the copolymer films was subsequently characterized. The contact angle measurements and energy dispersive analysis of X-ray (EDAX) show that the length and content of perfluoroalkyl side chains in the copolymers are crucial for the preparation of the film with low surface energy. At a given content of fluorinated monomers in the copolymers, the longer the perfluoroalkyl side chain, the larger the water contact angle of the copolymer films will be. On the other hand, the higher the content of fluorinated monomers, the lower the surface energy is. The water contact angle increases with the increase of the fluorinated monomer content and reaches a plateau at 3 wt% of fluorinated monomer content.  相似文献   

5.
Dissipative particle dynamics, a simulation technique appropriate at mesoscopic scales, has been applied to investigate the interfaces in immiscible binary A/B homopolymer blends and in the ternary systems with their block copolymers. For the binary blends, the interfacial tension increases and the interface thickness decreases with increasing Flory-Huggins interaction parameter chi while the homopolymer chain length is fixed. However, when the chi parameter and one of the homopolymer chain length is fixed, increasing another homopolymer chain length will induce only a small increase on interfacial tension and slight decrease on interface thickness. For the ternary blends, adding the A-b-B block copolymer will reduce the interfacial tension. When the mole number of the block copolymer is fixed, longer block chains have higher efficiency on reducing the interfacial tension than the shorter ones. But for the block copolymers with fixed volume fraction, shorter chains will be more efficient than the longer ones on reducing the interfacial tension. Increasing the block copolymer concentration reduces interfacial tension. This effect is more prominent for shorter block copolymer chains.  相似文献   

6.
The pH-responsive behavior of cationic diblock poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate) copolymer micelles adsorbed at the silica/aqueous solution interface has been characterized. The micellar morphology of this copolymer, initially adsorbed at pH 9, can be dramatically altered by lowering the solution pH. The original micelle-like morphology of the adsorbed copolymer chains at pH 9 completely disappears as the pH is decreased to 4, and a brush-like layer structure is produced. This change results from protonation of the copolymer chains: the subsequent electrostatic repulsions within the film drive the copolymer chains to expand into the aqueous phase. Returning the solution pH from 4 to 9 causes this brush-like layer to collapse, with atomic force microscopy images suggesting degradation of the film. Hence, the pH-responsive behavior of the copolymer film exhibits irreversible morphological changes. Measurements of the adsorbed/desorbed amounts of the copolymer film were conducted using both a quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry (OR). After an initial rinse at both pH values, the OR adsorbed mass becomes almost constant during subsequent pH cycling, whereas the corresponding QCM-D adsorbed mass changes significantly but reversibly in response to the solution pH. Since the QCM-D measures a bound mass that moves in tandem with the surface, the discrepancy with the OR data is due to changes in the amount of bound water in the copolymer film as a result of the pH-induced changes in surface morphology. The larger effective mass observed at pH 4 suggests that the brush-like layer contains much more entrapped water than the micellar films at pH 9. The pH dependence of the contact angle of the adsorbed film is consistent with the changes observed using the other techniques, regardless of whether the solution pH is altered in situ or the aqueous solution is completely replaced. In fact, comparison of these two approaches provides direct evidence of the exposure of adsorbed micelle core blocks to the solution during pH cycling and the concomitant impact upon all the other measurements.  相似文献   

7.
The stabilizing (emulsifying) effect of a symmetric diblock copolymer in the mixture of two immiscible homopolymers is considered. The equilibrium value of the interfacial area per copolymer chain is calculated via minimization of the free energy of the mixture for a fixed number of copolymer chains adsorbed to the interface. The size and concentration of droplets of the minor component are determined for the equilibrium state. The particles' radius is shown to be inversely proportional to the copolymer concentration, the coefficient of proportionality being dependent on the Flory-Huggins parameter and chain length. The penetration of homopolymer segments into the copolymer layer on the interface is taken into account and proved to be important for stabilization of the droplets by symmetric copolymers. The conditions of the validity of the presented approach are discussed in detail.  相似文献   

8.
采用PERM(pruned-enriched Rosenbluth method)算法,研究了吸附在界面附近的紧密高分子链力学行为.发现当界面的吸附能比较大时,紧密高分子链从紧贴于吸附界面到逐渐远离的过程中,其外形会经历4种典型的变化.同时紧密高分子链的尺寸大小如/N、xy/N、z/N,形状参数<δ*>,热力学性质如每个键的平均自由能A/N,平均相互作用能/N等,甚至所受外力的大小都会同时做出相应的变化,其出现变化的位置也一致.特别是随着紧密高分子链离开吸附界面的过程中,作用于高分子链上的外力明显出现几个力学平台,这与实验得到的结果完全一致.同时还研究了弱吸附能的情况,在这种情况下实验是很难进行的.  相似文献   

9.
A microscopic density functional theory is used to investigate the adsorption of short chains on attractive solid surfaces. We analyze the structure of the adsorbed fluid and investigate how the wetting transition changes with the change of the chain length and with the relative strength of the fluid-solid interaction. End segments adsorb preferentially in the first adsorbed layer whereas the concentration of the middle segments is enhanced in the second layer. We observe that the wetting temperature rescaled by the bulk critical temperature decreases with an increase of the chain length. For longer chains this temperature reaches a plateau. For the surface critical temperature an inverse effect is observed, i.e., the surface critical temperature increases with the chain length and then attains a plateau. These findings may serve as a quick estimate of the wetting and surface critical temperatures for fluids of longer chain lengths.  相似文献   

10.
Monte Carlo simulations for the adsorption of symmetric triblock copolymers from a nonselective solvent at a solid-liquid interface have been performed on a lattice model. In simulations, triblock copolymer molecules are modeled as self-avoiding linear chains composed of m segments of A and n segments of B arranged as Am/2BnAm/2. Either segment A or segment B is attractive, while the other is non-attractive to the surface. The microstructure of the adsorbed layers, including the segment-density profiles and the size distribution of loops, tails and trains are presented. The effect of the adsorption energy, the bulk concentration, the chain composition, as well as the chain length on various adsorption properties has been studied. The results have shown that the size distribution of various configurations is dependent of the adsorption energy, the chain composition and the chain length. The mean length of the loops, trains and tails is insensitive to the bulk concentration. The mean length of the trains increases and that of the tails decreases as the adsorption energy and the length of the attractive segments increase. The mean length of the loops for the end-adsorbed copolymers appears a maximum and that for middle-adsorbed copolymers appears a minimum as the length of attractive segments increases. The length of the non-attractive segments affects mostly the size distribution of the tails. The longer the chain is, the larger the tail appears. The mean length of the tails and loops increases linearly as the length of the non-attractive segments increases, but that of the trains approximately is unchanged.  相似文献   

11.
Adsorption of short two-dimensional compact chains confined in the double attractive parallel planar boundaries is investigated by using enumeration calculation method in this paper. First, we calculate the chain size and shape of adsorbed compact chains, such as mean-square end-to-end distance per bond R2/N, mean-square radii of gyration per bond S2x/N and S2y/N, shape factor δ and fraction of adsorbed segments fa to illuminate that how the size and shape of adsorbed compact chains changes during the process of tensile elongation. There are some special behaviors in the chain size and shape for strong attraction interaction. In the meantime, compact chains can reach to the stable state with large distance between two parallel boundaries D. On the other hand, some thermodynamic properties, such as average energy per bond, Helmholtz free energy per bond, elastic force f and energy contribution to elastic fU are also investigated in order to study the elastic behavior of compact chains adsorbed on the double attractive parallel planar boundaries. These investigations may provide some insights into the thermodynamic behaviors of adsorbed compact chains.  相似文献   

12.
The interaction forces between adsorbed polymer layers were investigated. Two types of graft copolymers that were adsorbed on hydrophobic surfaces have been investigated: (i) a graft copolymer consisting of polymethylmethacrylate/polymethacrylic acid back bone (the B chain) on which several poly(ethylene oxide) chains are grafted (to be referred to as PMMA/PEOn); and (ii) a graft copolymer consisting of inulin (linear polyfructose with degree of polymerization > 23) (the A chain) on which several C12 chains are grafted (INUTEC SP1). In the first case adsorbed layers of the graft copolymer were obtained on mica sheets and the interaction forces were measured using the surface force apparatus. In the second case the interaction forces were measured using Atomic Force Microscopy (AFM). For this purpose a hydrophobically modified glass sphere was attached to the tip of the cantilever of the AFM and the glass plate was also made hydrophobic. Both the sphere and the glass plate contained an adsorbed layer of INUTEC SP1.In the surface forces apparatus one essentially measures the energy E(D)–distance D curves for the graft copolymer of PMMA/PEOn between mica surfaces bearing the graft copolymer and this could be converted to interaction energy between flat surfaces. Using the de Gennes scaling theory, it is possible to calculate the interaction energy between the polymer layers. The same graft copolymer was used in latex dispersions and the high frequency modulus G′ was measured as a function of the volume fraction ? of the dispersion. This high frequency modulus could be related to the potential of mean force. In this way one could compare the results obtained from rheology and those obtained from direct measurement of interaction forces.In the AFM method, the interaction forces are measured in the contact area between two surfaces, i.e. a spherical glass particle and a glass plate. Both glass spheres and plates were hydrophobized using dichlorodimethylsilane. Results were obtained for adsorbed layers of INUTEC SP1 in water and in the presence of various concentrations of Na2SO4 (0.3, 0.8, 1.0 and 1.5 mol dm− 3). All results showed a rapid increase of force with a decrease of separation distance and the forces were still repulsive up to the highest Na2SO4 concentration. This explains the high stability of dispersions when using INUTEC SP1 as stabilizer.  相似文献   

13.
Adsorption of copolymers on patterned surfaces is studied using lattice modeling and multiple Markov chain Monte Carlo methods. The copolymer is composed of alternating blocks of A and B monomers, and the adsorbing surface is composed of alternating square blocks containing C and D sites. Effects of interaction specificity on the adsorbed pattern of the copolymer and the sharpness of the adsorption transition are investigated by comparing three different models of copolymer-surface interactions. Analyses of the underlying energy distribution indicate that adsorption transitions in our models are not two-state-like. We show how the corresponding experimental question may be addressed by calorimetric measurements as have been applied to protein folding. Although the adsorption transitions are not "first order" or two-state-like, the sharpness of the transition increases when interaction specificity is enhanced by either including more attractive interaction types or by introducing repulsive interactions. Uniformity of the pattern of the adsorbed copolymer is also sensitive to the interaction scheme. Ramifications of the results from the present minimalist models of pattern recognition on the energetic and statistical mechanical origins of undesirable nonspecific adsorption of synthetic biopolymers in cellular environments are discussed.  相似文献   

14.
The pH-responsive behavior of adsorbed diblock copolymer films of PDMA-PDEA (poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)) on silica has been characterized using a quartz crystal microbalance with dissipation monitoring (QCM-D), an optical reflectometer (OR) and an atomic force microscope (AFM). The copolymer was adsorbed at pH 9 from various copolymer concentrations; QCM-D measurements indicate that the level of desorption when rinsed at pH 9 depends on the initial copolymer concentration. The adsorbed films produced at pH 9 generally have low charge densities; adjusting the solution pH to 4 results in a significant protonation of the constituent copolymers and a related interfacial structural change for the copolymer film. OR studies show no significant change during pH cycling, while QCM-D measurements indicate that the adsorbed mass and dissipation alter dramatically in response to the solution pH. The difference between the QCM-D adsorbed masses and dissipation values at pH 4 and 9 were found to be dependent on the initial copolymer concentration. This is due to differences in the initial conformations within the adsorbed copolymer layers at pH 9. The effect of the PDMA chain length on the pH-responsive behavior has also been studied; both the QCM-D adsorbed mass and dissipation of PDMA54-PDEA24 (shorter PDMA block) at pH 4 and 9 were observed to be greater than those of PDMA9X-PDEA2Y (longer PDMA block). This suggests that the normal extension of the adsorbed PDMA54-PDEA24 copolymer films is more significant than that of the PDMA9X-PDEA2Y films on silica.  相似文献   

15.
A gradient combinatorial approach was used to examine the effect of substrate surface energy on the morphology and stability of films of a poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymer that exhibits an alternating gyroid morphology in the bulk. Atomic force microscopy data across our surface energy (water contact angle) library suggest a transformation to predominantly surface parallel lamellae with an antisymmetric ordering. For substrate water contact angles below 70 degrees the film exhibited autophobic dewetting from an adsorbed half-period triblock copolymer monolayer at longer annealing times. X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure analysis along gradient specimens indicated that the substrate surface energy governed the composition profile of the monolayer, and this variation in chemical expression was key to whether the film was stable or autophobically dewet. These observations demonstrate that enthalpic interactions, in addition to entropic considerations, can play a major role in autophobic dewetting of block copolymer films.  相似文献   

16.
Elastic behaviors of single polymer chains adsorbed on the attractive surface are first investigated using Monte Carlo simulation method based on the bond fluctuation model. We investigate the chain size and shape of adsorbed chains, such as mean-square radius of gyration S2, mean-square bond length b2, shape factors sf(i) and delta*, and the orientation of chain segments P2, to illuminate how the shape of polymer chains changes during the process of tensile elongation. There are some special behaviors of the chain size and shape at the beginning of elongation, especially for strong attraction interaction. For example, mean fraction of adsorbed segments decreases abruptly in the region of small elongation ratio and then decreases slowly with increasing elongation ratio. In fact, the chain size and shape also changes abruptly for small elongation ratio with strong attraction interaction. Some thermodynamics properties are also investigated here. Average Helmholtz free energy increases fast for elongation ratio lambda<1.15, especially with strong attraction, and increases slowly for lambda>1.15. Similar behaviors are obtained for average energy per bond. Elastic force (f ) and energy contribution to force (f(U)) are also studied, and we find that elastic force decreases abruptly for lambda<1.15, and there is a minimum of elastic force for strong attraction interaction, then increases very slowly with increasing elongation ratio. However, there are different behaviors for weak attraction interaction. For energy contribution to force (f(U)), there is a maximum value for strong attraction interaction in the region of lambda<1.15. Some comparisons with the atomic force microscopy experiments are also made. These investigations may provide some insights into the elastic behaviors of adsorbed polymer chains.  相似文献   

17.
18.
The effect of copolymer sequence distribution and stiffness on the adsorption–desorption transition and configuration of an adsorbed polymer chain is examined by Monte Carlo methods. Trends in the adsorption–desorption transition temperatures show that the transition temperature of the block and alternating copolymers are determined by entropic factors while the copolymers with a random sequence distribution (block-ran, random, or alt-ran, defined below) are controlled by enthalpic considerations. Analysis of the conformation of adsorbed chains and monomer density profiles suggests that utilizing an adsorbed rigid copolymer may be useful at tuning the properties of an interface in a multiphase material. A block copolymer can be utilized to affect substantial surface coverage and extensive expansion away from the surface. Additionally, an increase in the rigidity of the diblock chain will improve the expansion of the chain in all three dimensions. Alternatively, random copolymer structures offer a chain that will adopt a flatter adsorbed configuration that offers more efficient surface coverage. In this case, the expansion of the copolymer along the surface can be enhanced by increasing the stiffness of the chain with little or no change in the expansion away from the interface.  相似文献   

19.
We characterize a series of dicyanovinyl-terthiophenes with different alkyl side chains. Variations of side chain substitution patterns and length mainly affect the morphology of the evaporated thin films, which in turn sensitively influences properties like absorption, energy levels, and thin film roughness. To investigate changes in transfer processes between electron donor (D) and acceptor (A) molecules due to side chain variations, we use photoinduced absorption spectroscopy (PIA). PIA probes the long-living photoexcited species at the D-A interface: triplet excitons, cations, and anions. For a blend layer of dicyanovinyl-terthiophene and the electron acceptor fullerene C(60), an energy transfer via the singlet and triplet manifold of C(60) occurs. The recombination dynamics of the triplet excitons reveal two components that differ in their lifetime and generation rate by 1 order of magnitude. By comparing the dynamics of triplet excitons in neat and blend layers, we estimate the energy transfer efficiency in dependence of the type of side chain. The compound with methyl side chains shows remarkable properties regarding thin film absorption, surface roughness, and energy transfer efficiency, which we attribute to the specific nanomorphology of the thin film.  相似文献   

20.
We present the results of extensive Monte Carlo simulations of diblock copolymers adsorbed on stripe-patterned surfaces of various widths. We have found that the width of the stripe pattern is an important parameter which dictates favorable recognition on the surface. For certain stripe widths, the adsorption of diblock copolymers to striped surfaces exhibits two transitions. The process involves recognition of the surface pattern by the diblock copolymer which follows a two step process in which the first block getting adsorbed to the appropriate pattern on the surface, without any recognition of the surface pattern, followed by the adsorption of the second block, where a reorganization process happens. For small widths and also for higher widths, the chain behaves just like a homopolymer where the twofold adsorbing process changes to the typical homopolymer adsorption. We have also found that there exists an optimal width of the stripes, independent of the chain length, where the recognition on the surface pattern is most favored. The characteristic temperature of the adsorption of the second block with weaker interactions is found to be independent of the chain length at this optimal width, proving that only local rearrangements take place after the first step. Some of our results describing the thermodynamics compare very well with the recent semianalytical approach of Kriksin et al. [J. Chem. Phys. 122, 114703 (2005)] on multiblock copolymers on heterogeneous surfaces. We also present some interesting conformational properties of the copolymer chain near the stripe-patterned surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号