首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The secondary structure of the organophosphorus acid anhydrolase (OPAA) Langmuir monolayer in the absence and presence of diisopropylfluorophosphate (DFP) in the subphase was studied by infrared reflection-absorption spectroscopy (IRRAS) and polarization-modulated IRRAS (PM-IRRAS). The results of both the IRRAS and the PM-IRRAS indicated that the alpha-helix and the beta-sheet conformations in OPAA were parallel to the air-water interface at a surface pressure of 0 mN.m-1 in the absence of DFP in the subphase. When the surface pressure increased, the alpha-helix and the beta-sheet conformations became tilted. When DFP was added to the subphase at a concentration of 1.1 x 10(-5) M, the alpha-helix conformation of OPAA was still parallel to the air-water interface, whereas the beta-sheet conformation was perpendicular at 0 mN.m-1. The orientations of both the alpha-helix and the beta-sheet conformations did not change with the increase of surface pressure. The shape of OPAA molecules is supposed to be elliptic, and the long axis of OPAA was parallel to the air-water interface in the absence of DFP in the subphase, whereas the long axis became perpendicular in the presence of DFP. This result explains the decrease of the limiting molecular area of the OPAA Langmuir monolayer when DFP was dissolved in the subphase.  相似文献   

2.
In this paper, we studied the surface properties of recombinant aequorin at the air-water interface. Using the Langmuir monolayer technique, the surface properties of aequorin were studied, including the surface pressure and surface potential-area isotherms, compression-decompression cycles, and stability on Trizma Base (Tris/HCl) buffer at pH 7.6. The results showed that aequorin formed a stable Langmuir monolayer and the surface pressure-area isotherms were dependent on both pH and ionic strength. At a pH higher or lower than 7.6, the limiting molecular area decreased. The circular dichroism (CD) spectra of aequorin in aqueous solutions explained this result: when the pH was higher than 7.6, the alpha-helix conformation changed to unordered structures, whereas at a pH lower than 7.6, the alpha-helix conformation changed to beta-sheet. The addition of calcium chloride to the Tris/HCl buffer subphase (pH 7.6) caused an increase of the limiting molecular area of the aequorin Langmuir monolayer. The fluorescence spectra of a Langmuir-Blodgett (LB) film of aequorin in the presence of calcium chloride indicated that the aequorin transformed to the apoaequorin.  相似文献   

3.
UV-vis reflection spectroscopy has been used for proving in situ the organization of pure viologen and hybrid viologen tetracyanoquinodimethanide monolayers at the air-water interface. Other more classical measurements concerning Langmuir monolayers, including surface pressure-area and surface potential-area isotherms, are also provided. The organization of the viologen in the Langmuir monolayer was investigated upon the different states of compression, and the tilt angle of the viologen moieties with respect to the water surface was determined. A gradual transition of the viologen molecules from a flat orientation in the gas phase to a more tilted position with respect to the water surface in the condensed phases occurs. The addition of a tetracyanoquinodimethane (TCNQ) salt in the subphase leads to the penetration of TCNQ anions into the positively charged viologen monolayer forming a hybrid viologen tetracyanoquinodimethanide film where a charge-transfer interaction between the two moieties is observed. From a quantitative analysis of the reflection spectra, an organization model of these hybrid monolayers at the air-water interface is proposed, suggesting a parallel arrangement of viologen and TCNQ units with a 1:2 stoichiometry.  相似文献   

4.
By screening uronic acid-based surfactant interfacial properties, the effect of the hydroxyl group stereochemistry (OH-4) on the conformation of bicatenary (disubstituted) derivatives at the air-water interface has been evidenced by experimental and computational approaches. Physical and optical properties of a monolayer characterized by Langmuir film balance, Brewster angle microscopy, and ellipsometry at 20 °C reveal that the derivative of glucuronate (C(14/14)-GlcA) forms a more expanded monolayer, and shows a transition state under compression, in the opposite to that of galacturonate (C(14/14)-GalA). Both films are very mechanically resistant (compression modulus > 300 mN m(-1)) and stable (collapse pressure exceeding 60 mN m(-1)), while that of C(14/14)-GalA exhibits a very high compression modulus up to 600 mN m(-1) like films in the solid state. Computational approaches provide single and assembly molecular models that corroborate the molecule expansion degree and interactions data from experimental results. Differences in the molecular conformation and film behaviours of uronic acid bicatenary derivatives at the air-water interface are attributed to the intra-H-bonding formation, which is more favourable with an OH-4 in the axial (C(14/14)-GalA) than in the equatorial position (C(14/14)-GlcA).  相似文献   

5.
聚醚酯是一种新型弹性材料,目前已成为工业化产品[1].对这种嵌段聚醚酯的合成和弹性行为[2]、熔体的流变性能[3]、以及纤维在拉伸状态下的聚集态结构和分子运动[4]已有一些报道.  相似文献   

6.
A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed.  相似文献   

7.
A two-component film technique at the air-water interface has been used for fabricating matrix stabilized azobenzene J-aggregates. Langmuir monolayers of (E)-1-(3-chloro-4-(alkyloxy)phenyl)-2-phenyldiazene (CnCD, n=8,10,12) have been prepared with stearic acid (STA) as the two-dimensional matrix. Miscibility studies at a molecular level, explored from the monolayer pressure-area isotherms revealed a phase separation of the CnCD from the stearic acid matrix at a compression pressure of 10 mN/m. A 43-nm strong red shift in the 350 nm pi-pi * absorption feature implied formation of highly ordered J-aggregates of CnCDs in conformity with atomic force microscopy and micro-Raman spectral characteristics. While a one-component CnCD failed to form a 2D monolayer, the STA supported CnCD binary system crossed a mixed monolayer phase followed by compression, leading to the formation of matrix stabilized CnCD J-aggregates.  相似文献   

8.
Surface pressure and surface potential-area isotherms were used to characterize a lysozyme Langmuir monolayer. The compression-decompression cycles and stability measurements showed a homogeneous and stable monolayer at the air-water interface. Salt concentration in the subphase and pH of the subphase were parameters controlling the homogeneity and stability of the Langmuir monolayer. In situ UV-vis and fluorescence spectroscopies were used to verify the homogeneity of the lysozyme monolayer and to identify the chromophore residues in the lysozyme. Optimal experimental conditions were determined to prepare a homogeneous and stable lysozyme Langmuir monolayer.  相似文献   

9.
Docetaxel (DCT) is an antineoplastic drug for the treatment of a wide spectrum of cancers. DCT surface properties as well as miscibility studies with l-alpha-dipalmitoyl phosphatidylcholine (DPPC), which constitutes the main component of biological membranes, are comprehensively described in this contribution. Penetration studies have revealed that when DCT is injected under DPPC monolayers compressed to different surface pressures, it penetrates into the lipid monolayer promoting an increase in the surface pressure. DCT is a surface active molecule able to decrease the surface tension of water and to form insoluble films when spread on aqueous subphases. The maximum surface pressure reached after compression of a DCT Langmuir film was 13 mN/m. Miscibility of DPPC and DCT in Langmuir films has been studied by means of thermodynamic properties as well as by Brewster angle microscopy (BAM) analysis of the mixed films at the air-water interface, concluding that DPPC and DCT are miscible and they form non-ideally mixed monolayers at the air-water interface. Helmholtz energies of mixing revealed that no phase separation occurs. In addition, Helmholtz energies of mixing become more negative with decreasing areas per molecule, which suggests that the stability of the mixed monolayers increases as the monolayers become more condensed. Compressibility values together with BAM images indicate that DCT has a fluidizing effect on DPPC monolayers.  相似文献   

10.
The aggregation of soluble, nontoxic amyloid beta (Abeta) peptide to beta-sheet containing fibrils is assumed to be a major step in the development of Alzheimer's disease. Interactions of Abeta with neuronal membranes could play a key role in the pathogenesis of the disease. Herein, we study the adsorption of synthetic Abeta peptide to DPPE and DMPE monolayers (dipalmitoyl- and dimyristoylphosphatidylethanolamine). Both lipids exhibit a condensed monolayer state at 20 degrees C and form a similar lattice. However, at low packing densities (at large area per molecule), the length of the acyl chains determines the phase behavior, therefore DPPE is fully condensed whereas DMPE exhibits a liquid-expanded state with a phase transition at approximately 5-6 mNm(-1). Adsorption of Abeta to DPPE and DMPE monolayers at low surface pressure leads to an increase of the surface pressure to approximately 17 mNm(-1). The same was observed during adsorption of the peptide to a pure air-water interface. Grazing incidence X-ray diffraction (GIXD) experiments show no influence of Abeta on the lipid structure. The adsorption kinetics of Abeta to a DMPE monolayer followed by IRRAS (infrared reflection absorption spectroscopy) reveals the phase transition of DMPE molecules from liquid-expanded to condensed states at the same surface pressure as for DMPE on pure water. These facts indicate no specific interactions of the peptide with either lipid. In addition, no adsorption or penetration of the peptide into the lipid monolayers was observed at surface pressures above 30 mNm(-1). IRRAS allows the measurement of the conformation and orientation of the peptide adsorbed to the air-water interface and to a lipid monolayer. In both cases, with lipids at surface pressures below 20 mNm(-1) and at the air-water interface, adsorbed Abeta has a beta-sheet conformation and these beta-sheets are oriented parallel to the interface.  相似文献   

11.
Microcin J25 forms stable monolayers at the air-water interface showing a collapse at a surface pressure of 5 mN/m, 220 mV of surface potential, and 6 fV per squared centimeter of surface potential per unit of molecular surface density. The adsorption of microcin J25 from the subphase at clean interfaces leads to a rise of 10 mN/m in surface pressure and a surface potential of 220 mV. From these data microcin appears to be a poor surfactant per se. Nevertheless, the interaction with the lipid monolayer further increase the stability of the peptide at the interface depending on the mode in which the monolayer is formed. Spreading with egg PC leads to nonideal mixing up to 7 mN/m, with hyperpolarization and expansion of components at the interface, with a small excess free energy of mixing caused by favorable contributions to entropy due to molecular area expansion compensating for the unfavorable enthalpy changes arising from repulsive dipolar interactions. Above 7 mN/m microcin is squeezed out, leaving a film of pure phospholipid. Nevertheless, the presence of lipid at 10 and 20 mN/m stabilize further microcin at the interface and adsorption from the subphase proceeds up to 30 mN/m, equivalent to surface pressure in bilayers.  相似文献   

12.
Infrared reflection-absorption spectroscopy (IRRAS) intensities of the Amide I vibration are used to develop a quantitative approach for determining the Euler angles that describe the orientation of protein beta-sheets in aqueous monolayer films. A synthetic amphipathic peptide, Val-Glu-Val-Orn-Val-Glu-Val-Orn-Val-Glu-Val-Orn-Val-OH is used as a test case. The pattern of Amide I frequencies suggests that the molecule is organized as an antiparallel beta-sheet at the air/water interface. The model used to simulate the Amide I intensities reveals that the beta-sheet has a slight preferential alignment parallel to the direction of compression; i.e., deviation from uniaxial symmetry is observed. In addition, the sheet is found to lie flat on the aqueous surface, with (presumably) the polar side chains interacting with the aqueous subphase. Limitations and advantages of the theoretical approach are discussed.  相似文献   

13.
Asymmetrically substituted poly(paraphenylene) (PhPPP) with hydrophilic and hydrophobic side chains was investigated. The polymer behavior at the air-water interface was studied on the basis of surface pressure-area (pi-A) isotherms and compression/expansion hysteresis measurements. PhPPP can form stable monolayers with an area per repeat unit of A=0.20+/-0.02 nm2 and a collapse pressure in the range of pi=25 mN/m. Then, Langmuir-Blodgett-Kuhn (LBK) films of PhPPP were prepared by horizontally and vertically transferring the Langmuir monolayers onto hydrophilic solid substrates at pi=12 mN/m. Cross-section analysis of the AFM tapping-mode topography images of a single transferred monolayer reveals a thickness of d0=0.9+/-0.1 nm. Taking into account the obtained monolayer thickness, curve-fitting calculations of angular scan data of LB monolayers measured using surface plasmon resonance (SPR) spectroscopy lead to a value for the refractive index of n=1.78+/-0.02 at lambda=632.8 nm. Next, the spontaneous formation of a PhPPP monolayer by adsorption from solution was studied ex situ by atomic force microscopy and UV-vis spectroscopy and in situ by using SPR spectroscopy. Stable self-assembled monolayers of PhPPP can be formed on hydrophilic surfaces with a thickness similar to that of the monolayer obtained using the LB method. The characterization results confirmed the amphiphilic character and the self-assembly properties of PhPPP, as well as the possibility of preparing homogeneous monolayer and multilayer films.  相似文献   

14.
The present note describes the use of surface pressure measurements (Langmuir monolayer technique) for the analysis of interactions of two different anthracyclines (adriamycin and daunorubicin) with a non-ionic, zwitterionic phospholipid monolayer, at the air-water interface. Because the surface membrane of the cell is the first barrier encountered by the anthracyclines in the treatment of cancer, drug-membrane interactions studied in model (monolayers or bilayers) and natural systems play an important role in the understanding of the bioactivity properties of these molecules. We report here the rate constants of the adsorption process of adriamycin and daunorubicin in the presence of a zwitterionic phospholipid monolayer at the air-water interface. Because interactions with the lipid monolayer strongly depend on the molecular packing of the lipid, we investigated this process at a relatively low surface pressure (7 mN/m), the interactions being favoured by the gaseous and liquid expanded structure of the lipid monolayer. The apparent molecular area of these molecules during the insertion into the lipid film and their interactions with the phospholipid polar head groups was evaluated and the estimated percentage of anthracyclines at the interface after adsorption into the lipid monolayer is briefly discussed. The rate constants for the adsorption and desorption process at the water-monolayer interface have been calculated on the basis of a single-exponential model. The observed difference of these parameters for daunorubicin and adriamycin suggests a different interaction of these anthracyclines during the adsorption to and/or penetration across the phospholipid monolayer.  相似文献   

15.
Amphiphilic block copolymers are attracting con-siderable attention because they exhibit unique self- assembly properties in selective organic solvents[1―4]. Semicrystalline poly(ethylene oxide) (PEO), having many interesting physicochemical properties s…  相似文献   

16.
Monolayer films of phospholipids at the air-water interface have been transferred to solid substrates under conditions of continuously varying surface pressure, an approach termed COVASP. The molecular and supramolecular properties of the film constituents have been characterized with two complementary techniques. IR spectroscopy was used to monitor chain conformation as a function of transfer surface pressure. Results were compared to those from Langmuir films determined directly at the A/W interface by IR reflection-absorption spectroscopy (IRRAS). The methylene stretching frequencies for both proteated and acyl chain perdeuterated 1,2-dipalmitoylphosphatidylcholine (DPPC and DPPC-d62) in the transferred molecules indicate that the phospholipids retain at least, in part, their surface pressure-dependent chain-conformational order characteristics. The line widths of these modes are somewhat reduced, suggestive of slower rates of reorientational motion in the Langmuir-Blodgett (LB) films. Epifluorescence microscopy reveals a progressive condensation gradient, including nucleation and growth of probe-excluding condensed domains along the transfer line. DPPC condensation, observed along a single LB film, was qualitatively comparable to compression-driven condensation as observed in situ or in conventional LB films transferred at constant pressures. However, condensation along the compression isotherm in COVASP-LB films was reduced by 15-20% as compared to films equilibrated at different constant pressures, probably the result of kinetic differences in equilibration processes. As a preliminary demonstration of the utility of this new approach, the monolayer --> multilayer transition known to occur (Eur. Biophys. J. 2005, 34, 243) in a four-component model for pulmonary surfactant has been examined. IR parameters from both the lipid and the protein constituents of the film all indicate that the transition persists during the transfer process. This new approach for the study of transferred films will permit the efficient characterization of lipid-protein interactions and structural transitions occurring in pulmonary surfactant films subjected to dynamic compression.  相似文献   

17.
In this work the interaction between human serum albumin (HSA) and a monofluorinated phospholipid, 1-palmitoyl-2-[16-fluoropalmitoyl-phosphatidylcholine] (F-DPPC), was studied by using Langmuir monolayer and Brewster angle microscopy (BAM) techniques. Different amounts of F-DPPC were spread on a previously formed HSA monolayer located at the air/water interface at 25 °C and the mixed monolayers thus obtained showed the existence of a liquid expanded-liquid condensed (LE-LC) phase transition (at 14 mN/m), attributed to the pure F-DPPC monolayer, coexisting with a second transition (at 22-24 mN/m) corresponding to the protein conformational change from an unfolded state to another in “loops” configuration. Relative thickness measurements recorded during the compression of the mixed monolayers showed the existence of an “exclusion” surface pressure (πexc), above which the protein is squeezed out the interface, but not totally. BAM images reveal that some protein molecules in a packed “loops” configuration remain at the interface at surface pressures higher than the “exclusion” surface pressure. The application of the Defay-Crisp phase rule to the phase diagram of the F-DPPC/HSA system can explain the existence of certain regions of surface pressure in which the mixed monolayer components are miscible, as well as those others that they are immiscible.  相似文献   

18.
Trioctylphosphine oxide- (TOPO-) capped (CdSe)ZnS quantum dots (QDs) were prepared through a stepwise synthesis. The surface chemistry behavior of the QDs at the air-water interface was carefully examined by various physical measurements. The surface pressure-area isotherm of the Langmuir film of the QDs gave an average diameter of 4.4 nm, which matched very well with the value determined by transmission electron microscopy (TEM) measurements if the thickness of the TOPO cap was counted. The stability of the Langmuir film of the QDs was tested by two different methods, compression/decompression cycling and kinetic measurements, both of which indicated that TOPO-capped (CdSe)ZnS QDs can form stable Langmuir films at the air-water interface. Epifluorescence microscopy revealed the two-dimensional aggregation of the QDs in Langmuir films during the early stage of the compression process. However, at high surface pressures, the Langmuir film of QDs was more homogeneous and was capable of being deposited on a hydrophobic quartz slide by the Langmuir-Blodgett (LB) film technique. Photoluminescence (PL) spectroscopy was utilized to characterize the LB films. The PL intensity of the LB film of QDs at the first emission maximum was found to increase linearly with increasing number of layers deposited onto the hydrophobic quartz slide, which implied a homogeneous deposition of the Langmuir film of QDs at surface pressures greater than 20 mN.m(-1).  相似文献   

19.
Crystalline monolayers of octadecylsulfonate amphiphiles (C18S) separated by hydrophilic guanidinium (G) spacer molecules were formed at the air-water interface at a surface coverage that was consistent with that expected for a fully condensed monolayer self-assembled by hydrogen bonding between the G ions and the sulfonate groups. The surface pressure-area isotherms reflected reinforcement of this monolayer by hydrogen bonding between the G ions and the sulfonate groups, and grazing incidence X-ray diffraction (GIXD) measurements, performed in-situ at the air-water interface, revealed substantial tilt of the alkyl hydrophobes (t = 49 degrees with respect to the surface normal), which allowed the close packing of the C18 chains needed for a stable crystalline monolayer. This property contrasts with behavior observed previously for monolayers of hexadecylbiphenylsulfonate (C16BPS) and G, which only formed crystallites upon compression, accompanied by ejection of the G ions from the air-water interface. Upon compression to higher surface pressures, GIXD revealed that the highly tilted (G)C18S monolayer crystallites transformed to a self-interdigitated (G)C18S crystalline multilayer accompanied by a new crystalline monolayer phase with slightly tilted alkyl chains and disordered sulfonate headgroups. This transformation was dependent on the rate of compression, suggesting kinetic limitations for the "zipper-like" transformation from the crystalline monolayer to the self-interdigitated (G)C18S crystalline multilayer.  相似文献   

20.
This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers (when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-)(1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号