首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present results from transient absorption spectroscopy on a series of artificial light-harvesting dyads made up of a zinc phthalocyanine (Pc) covalently linked to carotenoids with 9, 10, or 11 conjugated carbon-carbon double bonds, referred to as dyads 1, 2, and 3, respectively. We assessed the energy transfer and excited-state deactivation pathways following excitation of the strongly allowed carotenoid S2 state as a function of the conjugation length. The S2 state rapidly relaxes to the S* and S1 states. In all systems we detected a new pathway of energy deactivation within the carotenoid manifold in which the S* state acts as an intermediate state in the S2-->S1 internal conversion pathway on a sub-picosecond time scale. In dyad 3, a novel type of collective carotenoid-Pc electronic state is observed that may correspond to a carotenoid excited state(s)-Pc Q exciplex. The exciplex is only observed upon direct carotenoid excitation and is nonfluorescent. In dyad 1, two carotenoid singlet excited states, S2 and S1, contribute to singlet-singlet energy transfer to Pc, making the process very efficient (>90%) while for dyads 2 and 3 the S1 energy transfer channel is precluded and only S2 is capable of transferring energy to Pc. In the latter two systems, the lifetime of the first singlet excited state of Pc is dramatically shortened compared to the 9 double-bond dyad and model Pc, indicating that the carotenoid acts as a strong quencher of the phthalocyanine excited-state energy.  相似文献   

2.
A series of phthalocyanine-carotenoid dyads in which a phenylamino group links a phthalocyanine to carotenoids having 8-11 backbone double bonds were examined by visible and near-infrared femtosecond pump-probe spectroscopy combined with global fitting analysis. The series of molecules has permitted investigation of the role of carotenoids in the quenching of excited states of cyclic tetrapyrroles. The transient behavior varied dramatically with the length of the carotenoid and the solvent environment. Clear spectroscopic signatures of radical species revealed photoinduced electron transfer as the main quenching mechanism for all dyads dissolved in a polar solvent (THF), and the quenching rate was almost independent of carotenoid length. However, in a nonpolar solvent (toluene), quenching rates displayed a strong dependence on the conjugation length of the carotenoid and the mechanism did not include charge separation. The lack of any rise time components of a carotenoid S(1) signature in all experiments in toluene suggests that an excitonic coupling between the carotenoid S(1) state and phthalocyanine Q state, rather than a conventional energy transfer process, is the major mechanism of quenching. A pronounced inhomogeneity of the system was observed and attributed to the presence of a phenyl-amino linker between phthalocyanine and carotenoids. On the basis of accumulated work on various caroteno-phthalocyanine dyads and triads, we have now identified three mechanisms of tetrapyrrole singlet excited state quenching by carotenoids in artificial systems: (i) Car-Pc electron transfer and recombination; (ii)(1) Pc to Car S(1) energy transfer and fast internal conversion to the Car ground state; (iii) excitonic coupling between (1)Pc and Car S(1) and ensuing internal conversion to the ground state of the carotenoid. The dominant mechanism depends upon the exact molecular architecture and solvent environment. These synthetic systems are providing a deeper understanding of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.  相似文献   

3.
采用飞秒时间分辨吸收光谱手段观测了在500和800 nm激发下高光培养的紫色光合细菌Rhodopseu-domonas(Rps). palustris外周捕光天线LH2(HL-LH2)中不同共轭链长类胡萝卜素(Carotenoid, 简称Car)和细菌叶绿素a(Bacteriachlorophyll a, 简称BChl a)的特征吸收光谱. 光谱动力学分析结果表明, HL-LH2中不同Car分子间可能存在复杂的单重激发态能量平衡过程, Car分子同时向BChl a分子发生多途径的单重激发态能量传递, B800主要接受来自Car的S2和S1态能量; B850则主要接受来自长共轭链Car(共轭双键数目n=13)的S1态和B800的激发态能量, 整个能量传递过程在3~5 ps内完成.  相似文献   

4.
Ultrafast transient laser spectroscopy has been used to investigate carotenoid singlet excited state energy transfer in various Rhodobacter (Rb.) sphaeroides reaction centers (RCs) modified either genetically or chemically. The pathway and efficiency of energy transfer were examined as a function of the structures and energies of the donor and acceptor molecules. On the donor side, carotenoids with various extents of pi-electron conjugation were examined. RCs studied include those from the anaerobically grown wild-type strain containing the carotenoid spheroidene, which has 10 conjugated carbon-carbon double bonds; the GA strain containing neurosporene, which has nine conjugated double bonds; and aerobically grown wild-type cells, as well as aerobically grown H(M182)L mutant, both containing the carbonyl-containing carotenoid spheroidenone, which has 11 conjugated double bonds. By varying the structure of the carotenoid, we observed the effect of altering the energies of the carotenoid excited states on the rate of energy transfer. Both S(1)- and S(2)-mediated carotenoid-to-bacteriochlorophyll energy transfer processes were observed. The highest transfer efficiency, from both the S(1) and S(2) states, was observed using the carotenoid with the shortest chain. The S(1)-mediated carotenoid-to- bacteriochlorophyll energy transfer efficiencies were determined to be 96%, 84%, and 73% for neurosporene, spheroidene, and spheroidenone, respectively. The S(2)-mediated energy transfer efficiencies follow the same trend but could not be determined quantitatively because of limitations in the time resolution of the instrumentation. The dependence of the energy transfer rate on the energetics of the energy transfer acceptor was verified by performing measurements with RCs from the H(M182)L mutant. In this mutant, the bacteriochlorophyll (denoted B(B)) located between the carotenoid and the RC special pair (P) is replaced by a bacteriopheophytin (denoted phi(B)), where the Q(X) and Q(Y) bands of phi(B) are 1830 and 1290 cm(-1), respectively, higher in energy than those of B(B). These band shifts associated with phi(B) in the H(M182)L mutant significantly alter the spectral overlap between the carotenoid and phi(B), resulting in a significant decrease of the transfer efficiency from the carotenoid S(1) state to phi(B). This leaves energy transfer from the carotenoid S(2) state to phi(B) as the dominant channel. Largely because of this change in mechanism, the overall efficiency of energy transfer from the carotenoid to P decreases to less than 50% in this mutant. Because the spectral signature of phi(B) is different from that of B(A) in this mutant, we were able to demonstrate clearly that the carotenoid-to-P energy transfer is via phi(B). This finding supports the concept that, in wild-type RCs, the carotenoid-to-P energy transfer occurs through the cofactor located at the B(B) position.  相似文献   

5.
We prepared two heterooligomeric arrays based on free base/metalloporphyrins at axial positions and a metalloid phthalocyanine as a basal scaffolding unit by using the axial‐bonding capabilities as well as the known oxophilicity of dihydroxytin(IV) phthalocyanine. Both heterotrimers were completely characterized by elemental analysis, MALDI‐TOF MS, and 1H NMR (one‐ and two‐dimensional), UV/Vis, and fluorescence spectroscopy as well as cyclic voltammetry. The ground‐state properties indicate that there is minimal π–π interaction between the macrocyclic units. The excited‐state properties show that there is electronic energy transfer competing with photoinduced electron transfer from the singlet state of the axial porphyrin to the central metalloid phthalocyanine and a photoinduced electron transfer from the ground state of the axial porphyrin to the singlet state of the central metalloid phthalocyanine.  相似文献   

6.
In LH2 complexes of Rhodobacter sphaeroides the formation of a carotenoid radical cation has recently been observed upon photoexcitation of the carotenoid S2 state. To shed more light onto the yet unknown molecular mechanism leading to carotenoid radical formation in LH2, the interactions between carotenoid and bacteriochlorophyll in LH2 are investigated by means of quantum chemical calculations for three different carotenoids--neurosporene, spheroidene, and spheroidenone--using time-dependent density functional theory. Crossings of the calculated potential energy curve of the electron transfer state with the bacteriochlorophyll Qx state and the carotenoid S1 and S2 states occur along an intermolecular distance coordinate for neurosporene and spheroidene, but for spheroidenone no crossing of the electron transfer state with the carotenoid S1 state could be found. By comparison with recent experiments where no formation of a spheroidenone radical cation has been observed, a molecular mechanism for carotenoid radical cation formation is proposed in which it is formed via a vibrationally excited carotenoid S1 or S*state. Arguments are given why the formation of the carotenoid radical cation does not proceed via the Qx, S2, or higher excited electron transfer states.  相似文献   

7.
The femtosecond time evolutions of excited states in zinc phthalocyanine (ZnPC) films and at the interface with TiO2(110) have been studied by using time-resolved two-photon photoelectron spectroscopy (TR-2PPE). The excited states are prepared in the first singlet excited state (S1) with excess vibrational energy. Two different films are examined: ultrathin (monolayer) and thick films of approximately 30 A in thickness. The decay behavior depends on the thickness of the film. In the case of the thick film, TR-2PPE spectra are dominated by the signals from ZnPC in the film. The excited states decay with tau = 118 fs mainly by intramolecular vibrational relaxation. After the excited states cascaded down to near the bottom of the S1 manifold, they decay slowly (tau = 56 ps) although the states are located at above the conduction band minimum of the bulk TiO2. The exciton migration in the thick film is the rate-determining step for the electron transfer from the film to the bulk TiO2. In the case of the ultrathin film, the contribution of electron transfer is more evident. The excited states decay faster than those in the thick film, because the electron transfer competes with the intramolecular relaxation processes. The electronic coupling with empty bands in the conduction band of TiO2 plays an important role in the electron transfer. The lower limit of the electron-transfer rate was estimated to be 1/296 fs(-1). After the excited states relax to the states whose energy is below the conduction band minimum of TiO2, they decay much more slowly because the electron-transfer channel is not available for these states.  相似文献   

8.
A new family of light‐harvesting zinc phthalocyanine (ZnPc)–diketopyrrolopyrrole (DPP) hybrids have been synthesized and characterized. The absorption spectral measurements showed that the major absorptions of DPP (450–600 nm) are complementary to those of zinc phthalocyanine (300–400 and 600–700 nm). Therefore, the designed hybrids absorb over a broad range in the visible region. The geometric and electronic structures of the dyads were probed by initio B3LYP/6‐311G methods. The majority of the HOMOs were found to be located on the ZnPc, while the majority of the LUMOs were on the DPP units. The DPP units serve as the antenna, which upon excitation undergo efficient singlet–singlet energy transfer to the attached ZnPc units. The formed singlet ZnPc, in turn, donates its electron to the electron‐deficient DPP forming the low‐lying radical ion pairs ZnPc.+–DPP.? (energy=1.44–1.56 eV as calculated from the electrochemical measurements). The excited‐state events were confirmed by using a transient absorption technique in the picosecond–microsecond time range, as well as a time‐resolved emission technique. The rates of energy transfer from the singlet DPP to ZnPc were found to be extremely fast >1010 s?1, while the rates of electron transfer from the singlet excited state of ZnPc to DPP were found to be 3.7–6.6×109 s?1.  相似文献   

9.
Time-resolved polarization fluorescence spectroscopy in the femtosecond range was applied to a photosynthetic antenna system. Specific signals of excited states were obtained by simultaneous measurements of fluorescence rise and decay curves and polarized spectroscopy. Relaxation processes of carotenoids, energy transfer from carotenoids to chlorophyll (Chl) a, and energy migration among pigment pools of Chl a and Chl b were clearly resolved. Two new characteristics of carotenoid molecules were revealed only by anisotropy measurements. A new singlet excited state between the well known S2 (1Bu(+)) and S1 (2Ag(-)) states was resolved by an intermediary anisotropy (r(t) = 0.30) for siphonaxanthin in chloroplasts of Codium fragile. Time-dependent changes in anisotropy with an initial value of 0.52 (r(0) = 0.52) were recorded during the relaxation of lutein molecules in the light-harvesting complexes II of Arabidopsis thaliana, and this was interpreted as a strong interaction between two lutein molecules in the pigment-protein complexes. Other examples of the application of this method were also discussed.  相似文献   

10.
Extensive time-dependent DFT (TDDFT) and DFT/multireference configuration interaction (MRCI) calculations are performed on the singlet and triplet excited states of free-base porphyrin, with emphasis on intersystem crossing processes. The equilibrium geometries, as well as the vertical and adiabatic excitation energies of the lowest singlet and triplet excited states are determined. Single and double proton-transfer reactions in the first excited singlet state are explored. Harmonic vibrational frequencies are calculated at the equilibrium geometries of the ground state and of the lowest singlet and triplet excited states. Furthermore, spin–orbit coupling matrix elements of the lowest singlet and triplet states and their numerical derivatives with respect to nuclear displacements are computed. It is shown that opening of an unprotonated pyrrole ring as well as excited-state single and double proton transfer inside the porphyrin cavity lead to crossings of the potential energy curves of the lowest singlet and triplet excited states. It is also found that displacements along out-of-plane normal modes of the first excited singlet state cause a significant increase of the 2|Hso|S1>, 1|Hso|S1>, and 1|Hso|S0> spin–orbit coupling matrix elements. These phenomena lead to efficient radiationless deactivation of the lowest excited states of free-base porphyrin via intercombination conversion. In particular, the S1→T1 population transfer is found to proceed at a rate of ≈107 s−1 in the isolated molecule.  相似文献   

11.
The excited‐state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis‐ and trisphthalocyanines) are studied by using steady‐state and femtosecond transient absorption spectral measurements, where the excited‐state energy‐transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis‐Pc). In trisphthalocyanine (tris‐Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre‐associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady‐state spectra also show a face‐to‐face conformation in bis‐Pc, whereas in tris‐Pc, two of the three phthalocyanine branches form a pre‐associated face‐to‐face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure–property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.  相似文献   

12.
An artificial photosynthetic reaction center consisting of a carotenoid (C), a dimesitylporphyrin (P), and a bis(heptafluoropropyl)porphyrin (P(F)), C-P-P(F) , and the related triad in which the central porphyrin has been metalated to give C-P(Zn)-P(F) have been synthesized and characterized by transient spectroscopy. These triads are models for amphipathic triads having a carboxylate group attached to the P(F) moiety; they are designed to carry out redox processes across lipid bilayers. Triad C-P-P(F) undergoes rapid singlet-singlet energy transfer between the porphyrin moieties, so that their excited states are in equilibrium. In benzonitrile, photoinduced electron transfer from the first excited singlet state of P and hole transfer from the first excited singlet state of P(F) yield the initial charge-separated state C-P(.) (+)-P(F) (.) (-). Subsequent hole transfer to the carotenoid moiety generates the final charge-separated state C(.) (+)-P-P(F) (.) (-), which has a lifetime of 1.1 mus and is formed with a quantum yield of 0.24. In triad C-P(Zn)-P(F) energy transfer from the P(Zn) excited singlet to the P(F) moiety yields C-P(Zn)-(1)P(F) . A series of electron-transfer reactions analogous to those observed in C-P-P(F) generates C(.) (+)-P(Zn)-P(F) (.) (-), which has a lifetime of 750 ns and is formed with a quantum yield of 0.25. Flash photolysis experiments in liposomes containing an amphipathic version of C-P(Zn)-P(F) demonstrate that the added driving force for photoinduced electron transfer in the metalated triad is useful for promoting electron transfer in the low-dielectric environment of artificial biological membranes. In argon-saturated toluene solutions of C-P-P(F) and C-P(Zn)-P(F) , charge separation is not observed and a considerable yield of triplet species is generated upon excitation of the porphyrin moieties. In both triads triplet energy localized in the P(F) moiety is channeled to the carotenoid chromophore by a triplet energy-transfer relay mechanism. Certain photophysical characteristics of these triads, including the sequential electron transfer and the triplet energy-transfer relay mechanism, are reminiscent of those observed in natural reaction centers of photosynthetic bacteria.  相似文献   

13.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

14.
The electronic relaxation processes of a photoexcited linear perylenediimide-perylenemonoimide (PDI-PMI) acceptor-donor dyad were studied. PDI-PMI serves as a model compound for donor-acceptor systems in photovoltaic devices and has been designed to have a high-energy PDI (-*)-PMI (+*) charge transfer (CT) state. Our study focuses on the minimal Gibbs free energy (Delta G ET) required to achieve quantitative CT and on establishing the role of charge recombination to a triplet state. We used time-resolved photoluminescence and picosecond photoinduced absorption (PIA) to investigate excited singlet (S 1) and CT states and complemented these experiments with singlet oxygen ( (1)Delta g) luminescence and PIA measurements on longer timescales to study the population of triplet excited states (T 1). In an apolar solvent like cyclohexene (CHX), photoinduced electron transfer does not occur, but in more polar solvents such as toluene (TOL) and chlorobenzene (CB), photoexcitation is followed by a fast electron transfer, populating the PDI (-*)-PMI (+*) CT state. We extract rate constants for electron transfer (ET; S 1-->CT), back electron transfer (BET; S 1<--CT), and charge recombination (CR) to lower-energy states (CT-->S 0 and CT-->T 1). Temperature-dependent measurements yield the barriers for the transfer reactions. For ET and BET, these correspond to predictions from Marcus-Jortner theory and show that efficient, near quantitative electron transfer ( k ET/ k BET >or= 100) can be obtained when Delta G ET approximately -120 meV. With respect to triplet state formation, we find a relatively low triplet quantum yield (Phi T < 25%) in CHX but much higher values (Phi T = 30-98%) in TOL and CB. We identify the PDI (-*)-PMI (+*) state as a precursor to the T 1 state. Recombination to T 1, rather than to the ground-state S 0, is required to rationalize the experimental barrier for CR. Finally, we discuss the relevance of these results for electron donor-acceptor films in photovoltaic devices.  相似文献   

15.
We studied the energy transfer processes in the molecular array consisting of pyrene (Py), biphenyl (Ph2), and bisphthalimidethiophene (ImT), (Py-Ph2)2-ImT, during two-color two-laser flash photolysis (2-LFP). The first laser irradiation predominantly generates ImT in the lowest triplet excited state (ImT(T1)) because of the efficient singlet energy transfer from Py in the lowest singlet excited state to ImT and, then, intersystem crossing of ImT. ImT(T1) was excited to the higher triplet excited state (Tn) with the second laser irradiation. Then, the triplet energy was rapidly transferred to Py via a two-step triplet energy transfer (TET) process through Ph2. The efficient generation of Py(T1) was suggested from the nanosecond-picosecond 2-LFP. The back-TET from Py(T1) to ImT was observed for several tens of microseconds after the second laser irradiation. The estimated intramolecular TET rate from Py(T1) to ImT was as slow as 3.1 x 104 s-1. Hence, long-lived Py(T1) was selectively and efficiently produced during the 2-LFP.  相似文献   

16.
Four carotenoids, 3,4,7,8-tetrahydrospheroidene, 3,4,5,6-tetrahydrospheroidene, 3,4-dihydrospheroidene and spheroidene, have been incorporated into the B850 light-harvesting complex of the carotenoidless mutant, photosynthetic bacterium, Rhodobacter sphaeroides R-26.1. The extent of π-electron conjugation in these molecules increases from 7 to 10 carbon-carbon double bonds. Carotenoid-to-bacteriochlorophyll singlet state energy transfer efficiencies were measured using steady-state fluorescence excitation spectroscopy to be 54 ± 2%, 66 ± 4%, 71 ± 6% and 56 ± 3% for the carotenoid series. These results are discussed with respect to the position of the energy levels and the magnitude of spectral overlap between the S, (2′AJ state emission from the isolated carotenoids and the bacteriochlorophyll absorption of the native complex. These studies provide a systematic approach to exploring the effect of excited state energies, spectral overlap and excited state lifetimes on the efficiencies of carotenoid-to-bacteriochlorophyll singlet energy transfer in photosynthetic systems.  相似文献   

17.
采用从头算方法,讨论了9,10-二氰基蒽(DCA)和杜烯(DUR)间光诱导电子转移反应的态-态跃迁.考虑基组重叠误差(BSSE)对相互作用能的校正,用MP2方法优化得到重叠式[DCA…DUR]配合物的稳定构型.用单激发组态相互作用(CIS)方法讨论了[DCA…DUR]配合物的光诱导电荷分离和电荷复合过程.根据广义Mulliken-Hush(GMH)模型,计算了电荷复合过程的电子耦合矩阵元.结果表明,[DCA…DUR]配合物的S0→S1和S0→S2跃迁产生了两个强的局域激发态,S0→S3跃迁直接导致电荷分离态,小的振子强度预测该电荷转移(CT)跃迁是一弱跃迁,电荷分离态S3衰变到低局域激发态或基态的电荷复合是可能的.  相似文献   

18.
Metal phthalocyanine-sensitized photoreduction of dimethyl 4-nitrophthalate with ascorbic acid has been investigated. The primary photoreaction products are the corresponding amino-and hydroxylamino-compounds. The azoxy-compound is formed by coupling of the nitrosocompound with hydroxylamino-compound in the presence of air through secondary dark reaction. The redox potential and fluorescence quantum yield are also determined. The variation of the quantum yield of the sensitized photoreduction, the relative fluorescence quantum yield and their product with the concentration of nitro-compound has been examined. The efficiency of photoreduction sensitized by the excited singlet and triplet state of metal phthalocyanine has been also calculated. It is believed that electron transfer from the excited metal phthalocyanine to the nitro-compound is the initial process in the sensitized photoreduction. Quenching by electron transfer involves creation of an ion pair. Charge separation and back electron transfer is then a competitive process. Due to the spin selection rules, the efficiency of photoreduction sensitized by excited triplet state of metal phthalocyanine is higher than excited singlet state. Thus, a necessary requirement for a good sensitizer is that the triplet state is populated in high yield. An alternative way and also the aim of our work is to design a suitable phthalocyanine skeleton to overcome geminate recombination of the ion pair, in order to increase the efficiency of photoreduction sensitized by sir glet excited state of the sensitizer, so as to increase the quantum yield of the total sensitized photoreduction.  相似文献   

19.
The role of the B800 in energy and electron transfer in LH2 complexes has been studied using femtosecond time-resolved transient absorption spectroscopy. The B800 site was perturbed by application of lithium dodecyl sulfate (LDS), and comparison of treated and untreated LH2 complexes from Rhodobacter sphaeroides incorporating carotenoids neurosporene, spheroidene, and spheroidenone was used to explore the role of B800 in carotenoid to bacteriochlorophyll-a (BChla) energy transfer and carotenoid radical formation. Efficiencies of the S1-mediated energy transfer in the LDS-treated complexes were 86, 61, and 57% in the LH2 complexes containing neurosporene, spheroidene, and spheroidenone, respectively. Analysis of the carotenoid S1 lifetimes in solution, LDS-treated, and untreated LH2 complexes allowed determination of B800/B850 branching ratio in the S1-mediated energy transfer. It is shown that B800 is a major acceptor, as approximately 60% of the energy from the carotenoid S1 state is accepted by B800. This value is nearly independent of conjugation length of the carotenoid. In addition to its role in energy transfer, the B800 BChla is the only electron acceptor in the event of charge separation between carotenoid and BChla in LH2 complexes, which is demonstrated by prevention of carotenoid radical formation in the LDS-treated LH2 complexes. In the untreated complexes containing neurosporene and spheroidene, the carotenoid radical is formed with a time constant of 300-400 fs. Application of different excitation wavelengths and intensity dependence of the carotenoid radical formation showed that the carotenoid radical can be formed only after excitation of the S2 state of carotenoid, although the S2 state itself is not a precursor of the charge-separated state. Instead, either a hot S1 state or a charge-transfer state lying between S2 and S1 states of the carotenoid are discussed as potential precursors of the charge-separated state.  相似文献   

20.
Peridinin, the carotenoid in the peridinin chlorophyll a protein (PCP), was studied by Stark (electroabsorption) spectroscopy to determine the change in electrostatic properties produced on excitation within the absorption band, in methyl tetrahydrofuran (MeTHF) versus ethylene glycol (EG), at 77 K. Strikingly, a large change in the permanent dipole moment (|Deltamu|) was found between the ground state, S(0) (1(1)A(g)(-)), and the Franck-Condon region of the S(2) (1(1)B(u)(+)) excited state, in both MeTHF (22 D) and EG (approximately 27 D), thus revealing the previously unknown charge transfer (CT) character of this pi-pi transition in peridinin. Such a large |Deltamu| produced on excitation, we suggest, facilitates the bending of the lactone moiety, toward which charge transfer occurs, and the subsequent formation of the previously identified intramolecular CT (ICT) state at lower energy. This unexpectedly large S(2) dipole moment, which has not been predicted even from high-level electronic structure calculations, is supported by calculating the shift of the peridinin absorption band as a function of solvent polarity, using the experimentally derived result. Overall, the photoinduced charge transfer uncovered here is expected to affect the excited-state reactivity of peridinin and, within the protein, be important for efficient energy transfer from the carotenoid S(2) and S(1)/ICT states to the chlorophylls in PCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号