首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A four step Ag foil laser ablation-Ag nanoparticle fragmentation procedure in ultrapure water was carried out both under argon and in air. Pulses of a high power Nd/YAG laser were used for laser ablation (1064 nm) and for the three step Ag hydrosol treatment in the absence of Ag foil in the sequence 1064-532-1064 nm. Transmission electron microscopy (TEM) and surface plasmon (SP) extinction spectra provide evidence of Ag nanoparticle fragmentation in the second and third step of the procedure carried out under argon. While polydispersity of Ag hydrosol increases in the second step, both the polydispersity and the mean size of the nanoparticles are reduced in the third step. Qualitative and quantitative surface-enhanced Raman scattering (SERS)/surface-enhanced resonance Raman scattering (SERRS) spectral probing of systems with Ag hydrosols and the selected adsorbates at 514.5 nm excitation shows that Ag hydrosols obtained in the second step of the preparation procedure carried out in air are the most suitable substrates for SERS/SERRS experiments performed at this excitation wavelength.  相似文献   

2.
Surface-enhanced Raman scattering (SERS) of 4,4′-bipyridine (BPy) on silver foil substrate was measured using the 488, 514.5, and 1064 nm excitation lines. Density functional theory (DFT) methods were used to calculate the structure and vibrational spectra of Ag–BPy, Ag3–BPy and Ag4–BPy complexes with B3LYP/6-31++G(d,p)(C,H,N)/Lanl2dz(Ag) basis set. The Raman bands of BPy were assigned on the basis of the calculation of potential energy distribution. The calculated spectra of Ag–BPy and Ag4–BPy complexes were much closer to the experimental results of BPy adsorbed on silver surface than that of Ag3–BPy complexes. The vibrational frequencies that are sensitive to the planar or non-planar structure of BPy and to the dihedral angle of two pyridyl rings were discussed. The DFT results showed that the angles between two pyridyl rings for Ag–BPy and Ag4–BPy were skewed by about 38.44° and 37.1°, respectively. The energy gaps of the HOMO and LUMO from DFT were 415–912 nm for BPy–Ag complexes. The relative intensities of SERS bands changed with different excitation laser lines. Thus, a chemical enhancement mechanism should play an important role in the SERS of BPy on silver substrate.  相似文献   

3.
Sixty pigments, minerals and media have been analysed by Fourier-transform Raman (FT-Raman) microscopy in order to assemble a database of reference FT-Raman spectra for scientists working at the Arts-Science interface. An earlier library of Raman spectra compiled using visible excitation has been extended by the addition of 22 further reference spectra obtained with 780.0, 647.1, 632.8 and/or 514.5 nm excitation. The relative merits of 1064 nm and visible excitation are discussed.  相似文献   

4.
Non-destructive analysis of the artist’s palette of ancient wooden panel paintings is a difficult task and studies are rare. Here we compare different methods of analysis of a wooden panel painting, dated to the early sixteenth century, mainly by Raman and infrared spectroscopies. Raman spectra were recorded on collected/sampled micrometric fragments using portable Raman instruments with laser excitation lines at 532 and 785 nm and transportable Raman instruments at 532, 633 and 785 nm; a fixed 1064 nm Raman spectrometer was also used. Infrared analyses were performed in Attenuated Total Reflection (ATR-FTIR) mode. Using the portable instrument, the Raman spectra evidenced white lead, calcite and vermilion only. Raman spectra recorded by transportable and fixed instruments enabled the identification of most of the artist’s palette: (i) white lead, calcite, gypsum and cerussite for white colour; (ii) vermilion, red lead, litharge, haematite for red; (iii) azurite, indigo and lapis lazuli for blue. IR spectra gave information on the organic binding media. XRF analysis on a brown pigment suggested an heterogeneous mixture of a red pigment (such as haematite and/or minium) and a green one as malachite. GC-MS analysis allowed identifying terpenic resin in the composition of the outer protective layer.  相似文献   

5.
Surface-enhanced Raman scattering (SERS) of dipping films of azobenzene-containing long-chain fatty acids, nAmH (n=8, 12, m=3, 5), on silver mirrors measured with a wide range of excitation wavelengths in the 457.9-1064 nm region is reported. The obtained Raman spectra show great SERS effect even with the 1064 nm excitation, and the excitation with 457.9, 476.5, and 488.0 nm gives surface-enhanced resonance Raman scattering (SERRS) due to the resonance effect of the symmetry-forbidden n-pi* transition of the azo group. Of particular note in the present study is that the SERS spectra with the excitation in the 532-1064 nm region yield Raman bands whose frequencies are almost identical to those bands in Raman spectra of nAmH in solid state while the SERRS spectra with the excitation in the 457.9-514.5 nm region show not only a set of bands which correspond to those of nAmH in the solid state but also a set of bands whose frequencies show a significant shift from those of the bands of nAmH in the solid state. These observations lead us to conclude that there are two kinds of molecular aggregates in the dipping films of azobenzene-containing long-chain fatty acid in which azobenzene moieties are condensed to form small bundles.  相似文献   

6.
Recently, portable Raman instrumentation has been in demand for geosciences and for future planetary exploration for the identification of both organic and inorganic compounds in situ on Earth and on other planetary bodies, especially on Mars. Here we present the results of the analysis of halite/β-carotene and halite/mellitic acid mixtures, performed by miniaturized Raman instrumentation equipped with 785 and 1064 nm excitation. Various proportions of organics in the halite matrix were examined. The lowest concentration of β-carotene detected using the 785 nm laser was 1 mg kg(-1), with slightly better signals observed with shorter exposure times compared with the bench instrument using the same excitation wavelength. Mellitic acid was identified at the concentration level 10 g kg(-1). The 1064 nm excitation provided a lower sensitivity towards low concentration when compared with the 785 nm excitation.  相似文献   

7.
黄洁  姚建林  顾仁敖 《化学学报》2007,65(22):2505-2509
采用自组装技术在硅基底上进行金银纳米粒子的混合组装, 通过控制组装溶液中金银溶胶的体积比而控制基底上金银纳米粒子的密度. SEM结果显示金银呈亚单层均匀分布, 以吡啶为探针分子, 在不同波长的激发光下研究了纯金、银以及混合组装时的SERS效应. 利用金银在不同激发线下增强效应的不同以及探针分子吸附在金银纳米粒子表面主要谱峰相对强度差别的特点, 通过一系列校正以及差谱方法研究了金银共存时SERS效应的变化, 并分离出混合体系中金的增强行为, 结果表明在金银同时组装时吡啶的SERS谱峰特征主要表现为银纳米粒子的行为, 分离出的金SERS光谱特征接近银的行为, 说明金银纳米粒子之间产生了一定的耦合作用.  相似文献   

8.
The 1064 nm excited Raman spectra of p-terphenyl, p-quaterphenyl, p-quinquephenyl and p-sexiphenyl have been observed and compared with the 514.5 nm excited spectra. Dependencies of intensities of some major bands on the chain length and the excitation wavelength are discussed in terms of the preresonant Raman effect. A method for estimating the chain length from relative intensities is proposed.  相似文献   

9.
Glyphosate is one of the most widely used pesticides in the world, but it has been shown to persist in the environment and therefore needs to be detected in food. In this work, the detection of glyphosate by surface-enhanced Raman scattering (SERS) using gold and silver nanoparticles and three different commonly used laser excitations (532, 632, and 785 nm wavelengths) of a Raman microscope complemented with a portable Raman spectrometer with 785 nm excitation is compared. The silver and gold nanosphere SERS substrates were prepared by chemical synthesis. In addition, colorimetric detection of glyphosate using cysteamine-modified gold and silver nanoparticles was also tested. The best results were obtained with Ag NPs at 532 nm excitation with a detection limit of 1 mM and with Au nanoparticles at 785 nm excitation with a detection limit of 100 µM. The SERS spectra of glyphosate with cysteamine-modified silver NPs improved the detection limits by two orders of magnitude for 532 nm excitation, i.e., up to 10 µM, and by one order of magnitude for 632 and 785 nm excitation wavelengths.  相似文献   

10.
Surface-enhanced Raman scattering (SERS) activity of silver-gold bimetallic nanostructures (a mean diameter of approximately 100 nm) with hollow interiors was checked using p-aminothiophenol (p-ATP) as a probe molecule at both visible light (514.5 nm) and near-infrared (1064 nm) excitation. Evident Raman peaks of p-ATP were clearly observed, indicating the enhancement Raman scattering activity of the hollow nanostructure to p-ATP. The enhancement factors (EF) at the hollow nanostructures were obtained to be as large as (0.8+/-0.3)x10(6) and (2.7+/-0.5)x10(8) for 7a and 19b (b(2)) vibration mode, respectively, which was 30-40 times larger than that at silver nanoparticles with solid interiors at 514.5 nm excitation. EF values were also obtained at 1064 nm excitation for 7a and b(2)-type vibration mode, which were estimated to be as large as (1.0+/-0.3)x10(6) and (0.9+/-0.2)x10(7), respectively. The additional EF values by a factor of approximately 10 for b(2)-type band were assumed to be due to the chemical effect. Large electromagnetic EF values were presumed to derive from a strong localized plasmas electromagnetic field existed at the hollow nanostructures. SERS activity of hollow nanostructures with another size (a mean diameter of approximately 80 nm) was also investigated and large EF for 7a and b(2)-type band are obtained to be (0.6+/-0.3)x10(6) and (1.7+/-0.7)x10(8), respectively, at 514.5 nm excitation and (0.2+/-0.1)x10(6) and (0.6+/-0.2)x10(7), respectively, at 1064 nm excitation. Although the optical properties of the hollow nanostructures have not yet been well studied, high SERS activities of the nanostructures with hollow interiors have been exhibited in our report.  相似文献   

11.
A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). Accordingly, although no Raman signal is observable when 4-aminobenzenethiol (4-ABT), for instance, is self-assembled on a flat Au substrate, a distinct spectrum is obtained when Ag or Au nanoparticles are adsorbed on the pendent amine groups of 4-ABT. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Ag or Au nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap even by visible light. To appreciate the Raman scattering enhancement and also to seek the optimal condition for SERS at the nanogap, we have thoroughly examined the size effect of Ag nanoparticles, along with the excitation wavelength dependence, by assembling 4-ABT between planar Au and a variable-size Ag nanoparticle (from 20- to 80-nm in diameter). Regarding the size dependence, a higher Raman signal was observed when larger Ag nanoparticles were attached onto 4-ABT, irrespective of the excitation wavelength. Regarding the excitation wavelength, the highest Raman signal was measured at 568 nm excitation, slightly larger than that at 632.8 nm excitation. The Raman signal measured at 514.5 and 488 nm excitation was an order of magnitude weaker than that at 568 nm excitation, in agreement with the finite-difference time domain simulation. It is noteworthy that placing an Au nanoparticle on 4-ABT, instead of an Ag nanoparticle, the enhancement at the 568 nm excitation was several tens of times weaker than that at the 632.8 nm excitation, suggesting the importance of the localized surface plasmon resonance of the Ag nanoparticles for an effective coupling with the surface plasmon polariton of the planar Au substrate to induce a very intense electric field at the nanogap.  相似文献   

12.
本文报道了用514.5nm和413.1nm激光激发的细胞色素bc1复合结日 的偏振显微共振拉曼光谱和用1064nm激光激发的近红外傅里叶变换偏振拉曼光谱,已观察到不同结晶取向和偏振的影响。结果表明,这些取向排列和偏振的影响和分子的对称性质和结晶的三维结构有关。综可能随着三维结构中子单元和的中心的部位不同而改变,其对称性的不同与三不对称排列有关,也可归因子蛋白南环境电学上的不对称性。  相似文献   

13.
Excitation profiles of SERS (surface-enhanced Raman scattering) and/or SERRS (surface-enhanced resonance Raman scattering) spectral bands of two forms of a Ag-bpy (bpy = 2,2'-bipyridine) surface complex and of [Ru(bpy)3]2+ on Ag nanoparticle (hydrosol) surfaces were determined from the spectra excited in the 458-600 nm region and are reported together with the FT-SERS spectra of the Ag-bpy surface complex and FT Raman spectra of [Ru(bpy)3] Cl2. Seven of the observed 11 fundamentals as well as their first overtones and combination bands are selectively enhanced in SERS of the Ag-bpy surface complex formed in the Ag colloid/HCl/bpy system. The profiles of these bands show a common maximum at approximately 540 nm. The selectively enhanced bands of the Ag-bpy surface complex have nearly the same wavenumbers as those enhanced in the SERRS and resonance Raman spectra of [Ru(bpy)3]2+ upon excitation close to the 453 nm maximum of its MLCT absorption band. Moreover, the intensity patterns of the bpy vibrations of the two species match both in resonance (541 nm excitation for Ag-bpy, 458 nm for [Ru(bpy)3]2+) and in off-resonance (458 and 1064 nm for Ag-bpy, 1064 nm for [Ru(bpy)3]2+). The distinct band shapes of the excitation profiles of the selectively enhanced vibrational modes of the Ag-bpy surface complex, as well as the observation of overtones and combination bands in the SERS spectra upon excitation into this "band", are interpreted in terms of a charge-transfer resonance contribution to the overall SERS enhancement. In view of the near-coincidence of the vibrational modes coupled to the resonant electronic transition of Ag-bpy with those coupled to the MLCT transition of [Ru(bpy)3]2+, the resonant electronic transition is tentatively assigned to a Ag metal to bpy (pi*) CT transition.  相似文献   

14.
A comparative study of the feasibility and efficiency of Raman spectroscopic detection of thin layer chromatography (TLC) spots of some weak Raman scatterers (essential amino acids, namely, glycine and L-forms of alanine, serine, valine, proline, hydroxyproline, and phenylalanine) was carried out using four different visible and near-infrared (NIR) laser radiations with wavelengths of 532, 633, 785, and 1064 nm. Three types of commercial TLC plates were tested and the possibility of inducing surface enhanced Raman scattering (SERS) by means of Ag-sol was also investigated. The spectra obtained from spotted analytes adsorbed on TLC plates were of very different quality strongly depending on the excitation wavelength, the wetness of the samples, and the compounds examined. The best results were obtained with the simple silica TLC plate, and it has been established that the longest wavelength (lowest energy) NIR excitation of a Nd:YAG laser is definitely more suitable for generating normal Raman scattering of analyte spots than any of the visible radiations. Concerning SERS with application of Ag-sol to the TLC spots, 1-3 orders of magnitude enhancement was observed with wet samples, the greatest with the 532 nm radiation and gradually smaller with the longer wavelength excitations. It is shown, however, that due to severe adsorption-induced spectral distortions and increased sensitivity to microscopic inhomogeneity of the sample, none of the SERS spectra obtained with the dispersive Raman microscope operating in the visible region were superior to the best NIR normal FT-Raman spectra, as far as sample identification is concerned.  相似文献   

15.
The effect of aggregation on surfactant-suspended individual single-walled carbon nanotube (SWNT) Raman spectroscopy has been explored in the context of dielectrophoretic separation. The Raman spectra of individual surfactant-suspended HiPco SWNTs deposited on a substrate and the same suspension deposited via dielectrophoresis were compared as a function of iterative aggregation states. The evolution of the samples' radial breathing modes and tangential modes at multiple excitation wavelengths (514, 633, and 785 nm) illustrates a direct correlation between changes in the Raman spectra and a broadening and downshifting of resonance transition energies. Dielectrophoresis samples exhibited Raman changes similar to control samples, indicating characterization of electronic separation is compromised by aggregation effects.  相似文献   

16.
Raman spectra were measured for Langmuir-Blodgett (LB) films of C(16)NaphOH and C(10)AzoNaphC(4)N-SDS on Calcium Fluorite substrate for the first time. In order to find out favorable excitation condition, Raman spectra of the single and multi-monolayer LB films excited at different lines at 244, 514, 633 and 778 nm are recorded and compared in the present study. Raman spectrum of the monolayer LB film of C(16)NaphOH excited by 244 nm demonstrate that excellent signal to noise is achieved even for one monolayer LB film with an extremely short integrating time as 60 s because of being resonantly enhanced, while no meaningful spectra were recorded under the same condition for the monolayer LB film of C(10)AzoNaphC(4)N-SDS because of burning. Using a HeNe 633 nm excitation the problem with strong substrate fluorescence was partially solved, since under these conditions this fluorescence is mainly outside the fingerprint region of the LB film molecules (1000-2000 cm(-1)). Therefore by using the HeNe laser excitation, Raman spectra with high signal to noise ratio of LB films of C(16)NaphOH were collected and shown in this paper. These findings stress again the necessity to define an appropriate Raman system for this special application of LB film diagnosis.  相似文献   

17.
采用密度泛函理论研究了Ag/对巯基苯酚(MPH)/TiO2体系的表面增强拉曼散射(SERS)光谱化学增强机理. 分别研究了Ag13/MPH和Ag13/MPH/TiO2复合物在514.5 nm激发波长下的拉曼光谱, 发现由于TiO2的引入, 发生了非完全对称振动模式峰选择性增强的现象. 通过对电荷转移复合物基态和激发态的指认, 发现当激发波长大于MPH-TiO2电荷转移复合物的光学吸收阈值(635 nm)时, 该体系内将发生从Ag到MPH-TiO2部分的光诱导电荷转移现象. SERS光谱中b2模式的选择性增强, 来源于相应振动模式与电荷转移跃迁的耦合(Herzberg-Teller机制). 我们的理论结果不仅支持了实验现象, 并且明确界定了电荷转移复合物, 对于该体系存在的光依赖SERS现象提供了一个清晰的理论阐述.  相似文献   

18.
用密度泛函理论B3LYP方法和6—311G(d,p)/Lan12DZ优化得到黄曲霉素B1(AFBI)分子及其复合物AFB1-Ag的稳定结构,并计算了复合物的表面增强拉曼光谱和预共振拉曼光谱.结果表明,AFB1分子的拉曼光谱很大程度依赖于吸附位点以及入射光的激发波长.与分子的常规拉曼光谱相比,复合物表面增强拉曼光谱中C=O伸缩振动模的增强因子约为10^2—10^3,是由于复合物的极化率增强而导致的静态化学增强,并分析了振动模式的振动方向与其拉曼强度的关系.选择复合物最大吸收峰附近激发光266和482nm以及远离共振吸收波长785和1064nm作为入射光,计算得到不同入射光激发下复合物的预共振拉曼光谱.结果表明其增强因子最大达N100量级,主要是由电荷转移产生的共振增强引起的.  相似文献   

19.
Rhodium phthalocyanine (RhPc) was synthesized and ultra thin Langmuir-Blodgett (LB) films of RhPc were successfully fabricated. The LB film characterization was carried out using both UV-vis absorption spectra and Raman scattering. The Raman spectroscopy was carried out using 633 and 780 nm laser lines. LB films were deposited onto Ag nanoparticles to achieve the surface-enhanced pre-resonance Raman scattering (pre-SERRS) and surface-enhanced Raman scattering (SERS) for both laser lines, respectively, which allowed the characterization of the RhPc ultra thin films. The morphology of the LB RhPc neat film is extracted from micro-Raman imaging.  相似文献   

20.
In situ Raman spectroscopic measurements with 785 nm excitation were carried out in aqueous solutions containing bipyridine derivatives. Intense Raman signals were observed when the Ag dimer structure was optimized. The SERS activity was dependent upon on the structure of the Ag dimer with a distinct gap distance, suggesting that the intense SERS originates from the gap part of the dimer. Characteristic time-dependent spectral changes were observed. Not only a spectrum which was the superposition of two bipyridine spectra but also spectra which can be assigned to one of the bipyridine derivatives were frequently observed. Observation using solutions with different concentrations proved that the spectra originated from very small numbers of molecules at the active SERS site of the dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号