首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Chen  S. H.  Cheung  Y. K.  Xing  H. X. 《Nonlinear dynamics》2001,26(1):87-104
A nonlinear steady state vibration analysis of a wide class of planestructures is analyzed. Both the finite element method and incrementalharmonic balance method are used. The usual beam element is adopted inwhich the nonlinear effect arising from longitudinal stretching has beentaken into account. Based on the geometric nonlinear finite elementanalysis, the nonlinear dynamic equations including quadratic and cubicnonlinearities are derived. These equations are solved by theincremental harmonic balance (IHB) method. To show the effectiveness andversatility of this method, some typical examples for a wide variety ofvibration problems including fundamental resonance, super- andsub-harmonic resonance, and combination resonance of plane structuressuch as beams, shallow arches and frames are computed. Most of theseexamples have not been studied by other researchers before. Comparisonwith previous results are also made.  相似文献   

2.
The subharmonic resonance and bifurcations of a clamped-clamped buckled beam under base harmonic excitations are investigated. The nonlinear partial integrodifferential equation of the motion of the buckled beam with both quadratic and cubic nonlinearities is given by using Hamilton's principle. A set of second-order nonlinear ordinary differential equations are obtained by spatial discretization with the Galerkin method. A high-dimensional model of the buckled beam is derived, concerning nonlinear coupling. The incremental harmonic balance (IHB) method is used to achieve the periodic solutions of the high-dimensional model of the buckled beam to observe the nonlinear frequency response curve and the nonlinear amplitude response curve, and the Floquet theory is used to analyze the stability of the periodic solutions. Attention is focused on the subharmonic resonance caused by the internal resonance as the excitation frequency near twice of the first natural frequency of the buckled beam with/without the antisymmetric modes being excited. Bifurcations including the saddle-node, Hopf, perioddoubling, and symmetry-breaking bifurcations are observed. Furthermore, quasi-periodic motion is observed by using the fourth-order Runge-Kutta method, which results from the Hopf bifurcation of the response of the buckled beam with the anti-symmetric modes being excited.  相似文献   

3.
Dwivedy  S. K.  Kar  R. C. 《Nonlinear dynamics》2003,31(1):49-72
In this paper the nonlinear response of a base-excited slender beam carrying an attached mass is investigated with 1:3:9 internal resonances for principal and combinationparametric resonances. Here the method of normal forms is used to reduce the second order nonlinear temporal differential equation of motion of the system to a set offirst order nonlinear differential equations which are used to find the fixed-point, periodic, quasi-periodic and chaotic responses of the system.Stability and bifurcation analysis of the responses are carried out and bifurcation sets are plotted. Many chaotic phenomena are reported in this paper.  相似文献   

4.
This paper investigates the transverse 3:1 internal resonance of an axially transporting nonlinear viscoelastic Euler-Bernoulli beam with a two-frequency parametric excitation caused by a speed perturbation. The Kelvin-Voigt model is introduced to describe the viscoelastic characteristics of the axially transporting beam. The governing equation and the associated boundary conditions are obtained by Newton’s second law. The method of multiple scales is utilized to obtain the steady-state responses. The Routh-Hurwitz criterion is used to determine the stabilities and bifurcations of the steady-state responses. The effects of the material viscoelastic coefficient on the dynamics of the transporting beam are studied in detail by a series of numerical demonstrations. Interesting phenomena of the steady-state responses are revealed in the 3:1 internal resonance and two-frequency parametric excitation. The approximate analytical method is validated via a differential quadrature method.  相似文献   

5.
In this paper, a modified Jeffcott model is proposed and studied in order to shed light into the dynamics of a complex system, the Short Electrodynamic Tether (SET), which is similar to an unbalanced rotor. Due to the internal damping, a geometrically linear SET model appears to be unstable as predicted by the linear rotordynamics theory. Some studies in the field of rotordynamics suggest that this instability caused by internal damping do not appear if geometric nonlinearities are taken into account in the system equations of motion. Stability and bifurcation analysis have been carried out on the modified Jeffcott model, which accounts for geometric nonlinearities, orthotropy in the shaft's cross section, and a viscous damping-based internal damping model. The stability results analytically obtained have been compared with a nonlinear multibody model by means of time simulations and good agreement has been found.  相似文献   

6.
Application of saturation to provide active nonlinear vibration control was introduced not long ago. Saturation occurs when two natural frequencies of a system with quadratic nonlinearities are in a ratio of around 2:1 and the system is excited at a frequency near its higher natural frequency. Under these conditions, there is a small upper limit for the high-frequency response and the rest of the input energy is channeled to the low-frequency mode. In this way, the vibration of one of the degrees of freedom of a coupled 2 degrees of freedom system is attenuated. In the present paper, the effect of dry friction on the response of a system that implements this vibration absorber is discussed. The system is basically a plant with a permanent magnet DC (PMDC) motor excited by a harmonic forcing term and coupled with a quadratic nonlinear controller. The absorber is built in electric circuitry and takes advantage of the saturation phenomenon. The method of multiple scales is used to find approximate solutions. Various response regimes of the closed-loop system as well as the stability of these regimes are studied and the stability boundaries are obtained. Especial attention is paid on the effect of dry friction on the stability boundaries. It is shown that while dry friction tends to shrink the stable region in some parts, it enlarges other parts of the stable region. To verify the theoretical results, they have been compared with numerical solution and good agreement between the two is observed.This work was done while the authors were associated with the Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号