首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The evolution of indirect exciton luminescence in AlAs/GaAs coupled quantum wells after excitation by pulsed laser radiation has been studied in strong magnetic fields (B⩽12 T) at low temperatures (T⩾1.3 K), both in the normal regime and under conditions of anomalously fast exciton transport, which is an indication of the onset of exciton superfluidity. The energy relaxation rate of indirect excitons measured in the range of relaxation times between several and several hundreds of nanoseconds is found to be controlled by the properties of the exciton transport, specifically, this parameter increases with the coefficient of excitonic diffusion. This behavior is qualitatively explained in terms of migration of excitons between local minima of the random potential in the plane of the quantum well. Zh. éksp. Teor. Fiz. 114, 1115–1120 (September 1998)  相似文献   

2.
The kinetics of indirect photoluminescence of GaAs/AlxGa1−x As double quantum wells, characterized by a random potential with a large amplitude (the linewidth of the indirect photoluminescence is comparable to the binding energy of an indirect exciton) in magnetic fields B≤12 T at low temperatures T≥1.3 K is investigated. It is found that the indirect-recombination time increases with the magnetic field and decreases with increasing temperature. It is shown that the kinetics of indirect photoluminescence corresponds to single-exciton recombination in the presence of a random potential in the plane of the double quantum wells. The variation of the nonradiative recombination time is discussed in terms of the variation of the transport of indirect excitons to nonradiative recombination centers, and the variation of the radiative recombination time is discussed in terms of the variation of the population of optically active excitonic states and the localization radius of indirect excitons. The photoluminescence kinetics of indirect excitons, which is observed in the studied GaAs/AlxGa1−x As double quantum wells for which the random potential has a large amplitude, is qualitatively different from the photoluminescence kinetics of indirect excitons in AlAs/GaAs wells and GaAs/AlxGa1−x As double quantum wells with a random potential having a small amplitude. The temporal evolution of the photoluminescence spectra in the direct and indirect regimes is studied. It is shown that the evolution of the photoluminescence spectra corresponds to excitonic recombination in a random potential. Zh. éksp. Teor. Fiz. 115, 1890–1905 (May 1999)  相似文献   

3.
Spin splitting of optically active and inactive excitons in nanosized n-InP/InGaP islands has been revealed. Optically inactive states become manifest in polarized-luminescence spectra as a result of excitons being bound to neutral donors (or of the formation of the trion, a negatively charged exciton) in InP islands. The exchange-splitting energies of the optically active and inactive states have been determined. Fiz. Tverd. Tela (St. Petersburg) 40, 1745–1752 (September 1998)  相似文献   

4.
Excitonic properties and the dynamics are reported in quantum dots (QDs) and quantum wells (QW) of diluted magnetic semiconductors. Transient spectroscopies of photoluminescence and nonlinear-optical absorption and emission have been made on these quantum nanostructures. The Cd1−x MnxSe QDs show the excitonic magnetic polaron effect with an increased binding energy. The quantum wells of the Cd1−x MnxTe/ZnTe system display fast energy and dephasing relaxations of the free and localized excitons as well as the tunneling process of carriers and excitons in the QWs depending on the barrier widths. The observed dynamics and the enhanced excitonic effects are the inherent properties of the diluted magnetic nanostructures. Fiz. Tverd. Tela (St. Petersburg) 40, 846–848 (May 1998) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

5.
The Zeeman effect in the emission spectra of localized excitons in semiconductor solid solutions has been studied by selective laser spectroscopy. It was shown that the fine structure appearing in the emission spectra of GaSe1−x Tex crystals under resonant monochromatic excitation in a magnetic field originates from spin relaxation of the light-induced localized excitons between their Zeeman sublevels. The localized-exciton g factor and its dependence on the energy of localized-exciton formation and solid-solution composition has been measured. Fiz. Tverd. Tela (St. Petersburg) 41, 1389–1393 (August 1999)  相似文献   

6.
The dynamics of a nanoparticle during its dipole interaction with an excitonic excitation in an extended quasi-one-dimensional polarizable medium is investigated. Bundles of J-aggregates of dye molecules are considered as an example of the latter. The nonlocal excitonic–mechanical interaction between the field of an amplifying or absorbing nanoparticle and excitons in a bundle has been simulated numerically. It has been found that the interaction between the field of the induced nanoparticle dipole and the fields of the molecular dipoles in an aggregate can lead to a change in the particle trajectory and excitonic pulse shape. The possibility of controlling the nanoparticle by excitonic pulses and the reverse effect of the nanoparticle field on the dynamics of excitons due to the nonlocal excitonic–mechanical interaction has been demonstrated.  相似文献   

7.
Using spatially inhomogeneous éliashberg equations in the local-interaction limit, an exact solution of the problem of the superconducting transition temperature in a Ginzburg sandwich (a superconducting film coated with a dielectric layer containing Bose-type excitations, i.e., excitons) in the first order in a/L (where a is the interatomic distance and L is the film thickness) has been obtained. The result has been found to be independent of the exciton frequency. The excitonic mechanism appears only in second order in a/L since both components of the Cooper pair should enter a layer of thickness ∼a in order to interact through the exchange of excitons. Numerical estimates indicate that manifestations of the excitonic mechanism are practically undetectable in systems with La. Calculations for the model with a narrow-gap and a wide-gap dielectric have been performed and compared to experimental data. Zh. éksp. Teor. Fiz. 111, 717–729 (February 1997)  相似文献   

8.
Instability in a system of interacting quasi-two-dimensional excitons in a type II superlattice of a finite thickness due to attraction between oppositely-directed excitonic dipoles in neighboring layers has been discovered. A stable system is that of indirect quasi-two-dimensional biexcitons formed by indirect excitons with dipole moments oriented in opposite directions. The radius and binding energy of indirect biexcitons has been calculated. A collective spectrum of a system of such biexcitons with a weak quadrupole interaction between them has been studied. Feasibility of Bose condensation, the density n s(T) of the superfluid component, and a phase transition to the superfliud state in a low-density system of indirect biexcitons have been analyzed. Zh. éksp. Teor. Fiz. 115, 1786–1798 (May 1999)  相似文献   

9.
Luminescence and luminescence excitation spectra are used to study the energy spectrum and binding energies of direct and spatially indirect excitons in GaAs/AlGaAs superlattices having different electron and hole miniband widths in high magnetic fields perpendicular to the heterolayers. The ground state of the indirect excitons formed by electrons and holes which are spatially distributed among neighboring quantum wells is found to lie between the ground 1s state of the direct excitons and the threshold of the continuum of dissociated exciton states in the minibands. The indirect excitons have a substantial oscillator strength when the binding energy of the exciton exceeds the scale of the width of the resulting miniband. It is shown that a high magnetic field shifts a system of symmetrically bound quantum wells toward weaker bonding. At high exciton concentrations, spatially indirect excitons are converted into direct excitons through exciton-exciton collisions. Fiz. Tverd. Tela (St. Petersburg) 40, 833–836 (May 1998)  相似文献   

10.
The irregular short period CdTe/ZnTe superlattice structure is investigated by both stationary and time-resolved optical spectroscopy with and without an external magnetic field as a perturbation. This study is aimed to emphasize the properties of radiative excitonic recombination in a superlattice of this type in comparison with the excitons confined in a single QW structure. The decay time of the excitons is about 400 ps which is deduced from the time-resolved measurements. Theg-factors of electrons and holes are obtained by the spin quantum beat measurements combined with Zeeman measurements. The experimental results show that theg-factors of holes in the irregular short period CdTe/ZnTe superlattice become dramatically different in comparison with the single CdTe/CdMgTe quantum wells.  相似文献   

11.
Spin relaxation of Mn ions in a Cd0.97Mn0.03Te/Cd0.75Mg0.25Te quantum well with photogenerated quasi-two-dimensional electron-hole plasma at liquid helium temperatures in an external magnetic field has been investigated. Heating of Mn ions by photogenerated carriers due to spin and energy exchange between the hot electron-hole plasma and Mn ions through direct sd-interaction between electron and Mn spins has been detected. This process has a short characteristic time of about 4 ns, which leads to appreciable heating of the Mn spin subsystem in about 0.5 ns. Even under uniform excitation of a dense electron-hole plasma, the Mn heating is spatially nonuniform, and leads to formation of spin domains in the quantum well magnetic subsystem. The relaxation time of spin domains after pulsed excitation is measured to be about 70 ns. Energy relaxation of excitons in the random exchange potential due to spin domains results from exciton diffusion in magnetic field B=14 T with a characteristic time of 1 to 4 ns. The relaxation time decreases with decreasing optical pump power, which indicates smaller dimensions of spin domains. In weak magnetic fields (B=2 T) a slow down in the exciton diffusion to 15 ns has been detected. This slow down is due to exciton binding to neutral donors (formation of bound excitons) and smaller spin domain amplitudes in low magnetic fields. The optically determined spin-lattice relaxation time of Mn ions in a magnetic field of 14 T is 270±10 and 16±7 ns for Mn concentrations of 3% and 12%, respectively. Zh. éksp. Teor. Fiz. 112, 1440–1463 (October 1997)  相似文献   

12.
A new excitonic mechanism for decreasing the quantum efficiency of the photoelectric conversion process in surface-barrier structures is considered. This mechanism involves the formation of hot excitons which have a large ionization energy and are not subject to the influence of the barrier electric field. The spectral dependence of the hot photocarrier losses is derived in an explicit form from experimental data on the basis of a previously proposed model and is analyzed. This dependence has two segments with abrupt increases, which are caused by the formation of excitons in the L and X valleys of the semiconductor. Fiz. Tverd. Tela (St. Petersburg) 40, 944–945 (May 1998)  相似文献   

13.
Optical orientation and alignment in the presence of a magnetic field have been applied to study the fine structure of excitons in type II GaAs/AlAs superlattices. We have developed a theory of polarized photoluminescence taking into account the anisotropic exchange splitting of the radiative excitonic doublet. The observed effects of the longitudinal and transverse magnetic fields on the polarization of the exciton emission unambiguously confirm that the actual symmetry of the exciton is lower that D2d and that there exist two classes of excitons with opposite signs of the anisotropic exchange splitting.  相似文献   

14.
II–VI quantum-well structures containing a 2DEG of low density have been investigated by means of polarized photoluminescence, photoluminescence excitation and reflectivity in external magnetic fields up to 20 T. The spin splittings of the exciton X and the negatively charged exciton X are measured as a function of the magnetic field strength. The behavior of the magnetic-field-induced polarization degree of the luminescence line related to X demonstrates the formation process of negatively charged excitons from excitons and free carriers polarized by the external magnetic field. We have determined the binding energies of the trion formed either with the heavy-hole or the light-hole exciton. The optically detected magnetic resonance (ODMR) technique was applied for the first time to study the optical transition processes in a nanosecond timescale. The electron ODMR was observed with the detection on either the direct exciton or the negatively charged exciton X. Further evidence for the interaction of excitons with the electrons of the two-dimensional gas are demonstrated by a combined exciton-cyclotron resonance line observed in reflectivity and luminescence excitation, shake-up processes observed in photoluminescence, as well as inelastic and spin-dependent scattering processes. Fiz. Tverd. Tela (St. Petersburg) 41, 831–836 (May 1999) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

15.
Excitons in many-valley semiconductors form molecules consisting of four and more excitons. The degeneracy factor g of the conduction band in germanium is 8, and in silicon g=12. As in acceptors, the hole ground state in excitons is fourfold degenerate. The same is valid for exciton molecules, because they are quantum objects with spherical symmetry. The exciton binding energy in molecules is close to that in exciton-liquid droplets. Experimental evidence is considered for the existence, besides biexcitons, of stable exciton molecules consisting of three and four, and, possibly, 11 and 12 excitons. Molecules containing from five to ten excitons are apparently unstable. Fiz. Tverd. Tela (St. Petersburg) 40, 929–931 (May 1998)  相似文献   

16.
The influence of photoexcited carriers on the dynamics of the absorption spectra of GaAs/AlxGa1−2x As multilayer quantum wells is investigated experimentally. It is found that at quasiparticle densities all the way up to 1011 cm−2 the saturation of the excitonic absorption is due to both a decrease of oscillator strength and broadening of the excitonic lines. It is shown that in the case of femtosecond resonance laser exci-tation the decrease of oscillator strength is due to free electron-hole pairs, while the broadening and energy shift of the excitonic lines are due to the exciton-exciton interaction. The lifetimes of free electron-hole pairs and excitons (≈65 ps and ≈410 ps, respectively) are determined from the exponential decrease of the change in the oscillator strength and in the width and energy position of the excitonic lines. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 3, 139–144 (10 August 1997)  相似文献   

17.
The effect of a random field due to impurities, boundary irregularities, and so on, on the superfluidity of a three-dimensional system of excitons and a quasi-two-dimensional system of direct or spatially indirect excitons is studied. The influence of a random field on the density of the superfluid component in the indicated excitonic systems at low temperatures T is investigated. The interaction between excitons is taken into account in the ladder approximation. For quasi-two-dimensional excitonic systems in a random field the Kosterlitz-Thouless temperature in the superfluid state is calculated.  相似文献   

18.
We report studies of the temperature dependence of the photoluminescence efficiency of single walled carbon nanotubes which demonstrate the role of bright and dark excitons. This is determined by the energy splitting of the excitons combined with 1-D excitonic properties. The splitting of the bright and dark singlet exciton states is found to be only a few meV and is very strongly diameter dependent for diameters in the range 0.8-1.2 nm. The luminescence intensities are also found to be strongly enhanced by magnetic fields at low temperatures due to mixing of the exciton states.  相似文献   

19.
Low-temperature photoluminescence of GaAs has been investigated in MBE-grown Al x Ga1–x As-GaAs single heterojunctions subject to an electric field. No peak energy shift is observed in the emission lines due to free excitons and excitons bound to isolated centers when the electric field is applied. In contrast, the excitonic lines arising from the previously described defect-induced bound exciton (DIBX) transitions exhibit a prominent low-energy shift when the electric field is increased. We attribute these lines to excitons bound to acceptor pairs. The excitons bound to distant pairs have smaller binding energies than those bound to closer pairs. They are, therefore, easily dissociated in a weak electric field. The electrons and holes thus dissociated may again be trapped by closer pairs, which results in a low-energy shift of the overall spectrum. The photocurrent measured as a function of the electric field supports Dingle's rule for the valence bandedge discontinuity.  相似文献   

20.
The effective g-factor of modulation doped n-type HgTe single quantum wells, SQWs, has been determined by the coincidence method in tilted magnetic fields to lie between 15 and 35. For symmetrically doped samples the effective g-factor has been found to be constant for different filling factors; however, for asymmetric SQWs, a large increase with increasing filling factor has been observed. This can be ascribed to a combination of Zeeman spin splitting and Rashba spin–orbit splitting. Reasonable agreement has been achieved between theoretical calculations based on the 8×8 k · p method and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号