首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ternary BaO-TiO2-B2O3 glasses containing a large amount of TiO2 (20-40 mol%) are prepared, and their optical basicities (Λ), the formation, structural features and second-order optical nonlinearities of BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are examined to develop new nonlinear optical materials. It is found that the glasses with high TiO2 contents of 30-40 mol% show large optical basicities of Λ=0.81-0.87, suggesting the high polarizabity of TiOn polyhedra (n=4-6) in the glasses. BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are found to be formed as main crystalline phases in the glasses. It is found that BaTi(BO3)2 crystals tend to orient at the surface of crystallized glasses. The new XRD pattern for the Ba3Ti3O6(BO3)2 phase is proposed through Rietvelt analysis. The second harmonic intensities of crystallized glasses were found to be 0.8 times as large as α-quartz powders, i.e., I2ω(sample)/I2ω(α-quartz)=0.8, for the sample with BaTi(BO3)2 crystals and to be I2ω(sample)/I2ω(α-quartz)=68 for the sample with Ba3Ti3O6(BO3)2 crystals. The Raman scattering spectra for these two crystalline phases are measured for the first time and their structural features are discussed.  相似文献   

2.
The structure of fine crystalline borogermanate La12GdEuB6Ge2O34 has been studied by NMR and IR spectroscopy. It has been demonstrated that this compound is isostructural to the homonuclear Ln14B6Ge2O34 compounds (Ln = Pr-Gd) and crystallizes in space group P31. The rare-earth elements have been distributed over the LnO n polyhedra in La12GdEuB6Ge2O34 by analogy with the known structures. Lanthanum can occupy positions with CN 7–10, and the symmetry of these LnO n coordination polyhedra is not higher than C 2v . In the La12GdEuB6Ge2O34 structure, the LnO n coordination polyhedra are formed by oxygen atoms of oxo groups and anions, some of the oxygen atoms being shared by LnO n polyhedra. The BO3 and GeO4 groups in the structure are also bridging, i.e., are involved in bonding of LnO n polyhedra. One of the B-O bonds in La12EuGd(BO3)6(GeO4)2O8 is elongated as compared with the B-O bond lengths in homonuclear compounds Pr14(BO3)6(GeO4)2O8 and Nd14(BO3)6(GeO4)2O8. In the La12GdEuB6Ge2O34 structure, germanium is located in isolated GeO4 tetrahedra with distorted T d symmetry. The local symmetry of lanthanum in fine crystalline La12GdEuB6Ge2O34 have been assessed using 139La NMR (B 0 = 7.04 T, room temperature). For comparison, binary lanthanum compounds with a simpler structure— LaBO3, La(BO2)3, and La2GeO5—have been used. The spectra of all compounds are rather broad (ν1/2 = 180–240 kHz). The 139La NMR spectra of the LaBO3, La(BO2)3, and La12GdEu(BO3)6(GeO4)2O8 borates show a signal at (1080 ± 40) ppm, which is absent in the spectrum of La2GeO5. The shape of the 139La NMR spectra of La12GdEu(BO3)6(GeO4)2O8 and LaBO3 is characterized by the second-order quadrupole splitting with a downfield shoulder. The similarity of these spectra points to close 139La NMR chemical shifts of La12GdEu(BO3)6(GeO4)2O8 and LaBO3. No quadrupole splitting was observed in the spectra of La(BO2)3 and La2GeO5.  相似文献   

3.
Infrared spectra of xBaO·(30-x)PbO·70B2O3, xBaO·(40-x)PbO·60B2O3 and xBaO·(50-x)PbO·50B2O3 glasses have been quantitatively analyzed. The fraction of four coordinated boron atoms varies linearly, for each group, between the values of the corresponding binary borate glasses. The data could be used to calculate and follow the composition dependence of the concentration of structural units in all glasses. The results show a linear increase in the ratio of PbO forming BO4 units to the total content of PbO, with increasing B2O3 in binary PbO–B2O3 glasses. Similar behavior has been observed for the ratio of BaO forming BO4 units to the total content of BaO in binary BaO–B2O3 glasses. The ratio of PbO forming PbO4 units to the total PbO content, and that of BaO forming asymmetric BO3 units to the total BaO content, shows a reversed dependence. The linear change in fraction of four coordinated boron atoms and in density and molar volume suggests that the studied glasses can be treated as mixtures of binary PbO–B2O3 and BaO–B2O3 matrices.  相似文献   

4.
The new oxyborate phosphors, Na3La9O3(BO3)8:Eu3+ (NLBO:Eu) and Na3La9O3(BO3)8:Tb3+ (NLBO:Tb) were prepared by solid-state reactions. The photoluminescence characteristics under UV excitation were investigated. The dominated emission of Eu3+ corresponding to the electric dipole transition 5D07F2 is located at 613 nm and bright green luminescence of NLBO:Tb attributed to the transition 5D47F5 is centered at 544 nm. The concentration dependence of the emission intensity showed that the optimum doping concentration of Eu and Tb is 30% and 10%, respectively.  相似文献   

5.
采用优化的高温固相方法制备了稀土离子Eu3+和Tb3+掺杂的La7O6(BO3)(PO42系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La7O6(BO3)(PO42:Eu3+材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D07F2特征能级跃迁,Eu3+的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La7O6(BO3)(PO42:Tb3+材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb3+5D47F5能级跃迁,Tb3+离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu3+和Tb3+掺杂的La7O6(BO3)(PO42荧光材料均具有良好的热稳定性。  相似文献   

6.
The heat capacity at constant pressure C p (T) of terbium diboride synthesized from elements via an intermediate hydride phase was studied experimentally within 5–300 K. A ferromagnetic phase transition manifests itself in the C p (T) dependence as a sharp maximum at 142.4 ± 0.1 K. The C p (T) dependence was used to calculate the tempreature dependences of the enthalpy, entropy, and the Gibbs energy and to determine the parameters of the electronic, lattice, and magnetic contributions to the heat capacity of TbB2.  相似文献   

7.
Four new ternary compounds with compositions Li6Nd(BO3)3, Na3Nd(BO3)2, and Na18Nd(BO3)7 have been found in the M2ONd2O3B2O3 systems, where M is either Li or Na. Concentration quenching of the neodymium emission in homologous lanthanum or gadolinium borates has been investigated. While in the Li6Gd(BO3)3, Na3La2(BO3)3, and Na3La(BO3)2 host lattices the quenching rate shows a quadratic dependence on Nd3+ concentration, as expected since the coordination polyhedra are connected by common faces or edges, in Na18La(BO3)7 the luminescent lifetime is not influenced by neodymium concentration. Lifetimes and crystal field splitting of the J levels are compared to those of other oxide host lattices.  相似文献   

8.
Anhydrous orthoborates RM3(BO3)4, where R = Y, La–Lu, M = Al, Ga, Cr, Fe, with huntite structure type are considered as multifunctional laser materials. The crystal structure of these borates is either rhombohedral with space group R32 (D37) (Z = 3) or monoclinic with space group C2/c (C2h6) (Z = 4) depending on the growth conditions. Both modifications have very close polytypic structures, and it is difficult to identify them by powder diffraction data. In this context, double borates of rare-earth cations and Cr3+ have been grown from high-temperature solutions and are characterized by Raman and infrared spectroscopy in a crystalline state in combination with factor group analysis of vibrational modes. The assignment for the stretching and bending vibrations of BO33− groups and external modes has been made. Some external modes have been identified by study of mass effect (Al–Cr, La–Ho). Comparison of the Raman spectra of these borates shows redistribution of band intensities of two spectral modifications, related to different symmetry groups. As predicted by factor group analysis, the number of IR-active vibrational modes of stretching and bending vibrations of BO33− units significantly increases in infrared spectra of monoclinic borates in comparison with rhombohedral ones. The dependence of the realized borate space group on the crystal growth conditions and the sort of rare-earth atom was revealed. Both GdCr3(BO3)4 and EuCr3(BO3)4 borates crystallize in space group R32 irrespective of growth conditions. The borates with the large rare-earth elements La–Nd always form the monoclinic structures, irrespective of crystallization temperature. The borates SmCr3(BO3)4, TbCr3(BO3)4 and DyCr3(BO3)4 have been obtained in two modifications in dependence of crystalline borate substance/solvent ratio and related temperature of crystallization.  相似文献   

9.
10.
Measurements of the temperature dependence of the electrical resistivity ρ(T), magnetic susceptibility χ(T), and Seebeck coefficient S(T) have been carried out on the n = 2, 3, and ∞ members of the homologous lanthanum nickel oxide systems Lan+1NinO3n+1 that were annealed in air. With increasing n, a progressive decrease in the electrical resistivity and a gradual change from insulating to metallic behavior are observed. La3Ni2O7 is nonmetallic, showing a gradual increase in ρ when T decreases (dp/dT < 0) from 300 to 4.2 K, whereas La4Ni3O10 and LaNiO3 exhibit metallic resistivity (dp/dT > 0). A minimum in ρ(T) near 140 K is observed for La4Ni3O10, while LaNiO3 exhibits a T2 dependence for ρ(T) below 50 K. The magnetic susceptibility of LaNiO3 is Pauli-like, but the χ(T) data for La3Ni2O7 and La4Ni3O10 below 350 K show a decrease with decreasing temperature. The Seebeck coefficient of all these compounds is negative at high temperatures; La3Ni2O7 and La4Ni3O10 exhibit a sign change in S at low temperatures. These results suggest a crossover from a fluctuating-valence to a Fermi-liquid-like behavior with increasing n.  相似文献   

11.
Orthovanadate ErVO4 has been prepared by solid-phase synthesis from a stoichiometric mixture of high pure V2O5 and chemically pure Er2O3 by multistage calcination in air in the temperature range 873–1273 K. The effect of temperature (380–1000 K) on the heat capacity of orthovanadate ErVO4 was studied by hightemperature calorimetry. Thermodynamic properties of erbium orthovanadate (enthalpy change H°(T)–H°(380 K), entropy change S°(T)–S°(380 K), and reduced Gibbs energy Φ°(T)) have been calculated from the experimental Cp = f(T) data. It has been shown that the specific heat varies in a row of oxides and orthovanadates of Gd-Lu naturally depending on the radius of the R3+ ion within the third and fourth tetrads.  相似文献   

12.
The heat capacities of Pb2V2O7 and Pb3(VO4)2 as a function of temperature in the range 350–965 K have been studied by the differential scanning calorimetry method. The CP = f(T) curve for Pb2V2O7 is described by the equation Cp = (230.76 ± 0.51) + (73.60 ± 0.50)×10-3T ? (18.38 ± 0.54)×105T-2 in the entire temperature range. For Pb3(VO4)2, there is a well-pronounced extreme point in the CP = f(T) curve at T = 371.5 K, which is caused by the existence of a structural phase transition. The thermodynamic properties of the oxide compounds have been calculated.  相似文献   

13.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

14.
Single crystals of new oxyborates, Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3, were prepared at 1370 °C in air using B2O3 as a flux. They were colorless and transparent with block shapes. X-ray diffraction analysis of the single crystals revealed Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 to be isostructural. The X-ray diffraction reflections were indexed to the orthorhombic Pnma (No. 62) system with a=9.3682(3) Å, b=9.4344(2) Å, c=9.3379(3) Å and Z=4 for Mg5NbO3(BO3)3 and a=9.3702(3) Å, b=9.4415(3) Å, c=9.3301(2) Å and Z=4 for Mg5TaO3(BO3)3. The crystal structures of Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 are novel warwickite-type superstructures having ordered arrangements of Mg and Nb/Ta atoms. Polycrystals of Mg5NbO3(BO3)3 prepared by solid state reaction at 1200 °C in air showed broad blue-to-green emission with a peak wavelength of 470 nm under 270 nm ultraviolet excitation at room temperature.  相似文献   

15.
Two new hydrated borates, Zn8[(BO3)3O2(OH)3] and Pb[B5O8(OH)]·1.5H2O, have been prepared by hydrothermal reactions at 170 °C. Single-crystal X-ray structural analyses showed that Zn8[(BO3)3O2(OH)3] crystallizes in a non-centrosymmetric space group R32 with a=8.006(2) Å, c=17.751(2) Å, Z=3 and Pb[B5O8(OH)]·1.5H2O in a triclinic space group P1¯ with a=6.656(2) Å, b=6.714(2) Å, c=10.701(2) Å, α=99.07(2)°, β=93.67(2)°, γ=118.87(1)°, Z=2. Zn8[(BO3)3O2(OH)3] represents a new structure type in which Zn-centered tetrahedra are connected via common vertices leading to helical ribbons 1[Zn8O15(OH)3]17− that pack side by side and are further condensed through sharing oxygen atoms to form a three-dimensional 3[Zn8O11(OH)3]9− framework. The boron atoms are incorporated into the channels in the framework to complete the final structure. Pb[B5O8(OH)]·1.5H2O is a layered compound containing double ring [B5O8(OH)]2− building units that share exocyclic oxygen atoms to form a two-dimensional layer. Symmetry-center-related layers are stacked along the c-axis and held together by interlayer Pb2+ ions and water molecules via electrostatic and hydrogen bonding interactions. The IR spectra further confirmed the existence of both triangular BO3 and OH groups in Zn8[(BO3)3O2(OH)3], and BO3, BO4, OH groups as well as guest water molecules in Pb[B5O8(OH)]·1.5H2O.  相似文献   

16.
Polycrystalline gaudefroyite‐type YCa3(CrO)3(BO3)4 with Cr3+ ions (3d3, S = 3/2) forming an undistorted Kagome lattice is prepared by reaction of a stoichiometric mixture of Y2O3, CaCO3, Cr2O3, H3BO3 in a KCl flux (Al2O3 crucible, 1000 °C, 1 d) followed by re‐grinding and further annealing (1000 °C, 2 d, 95% yield).  相似文献   

17.
《Solid State Sciences》2007,9(8):713-717
The new nonlinear optical crystals BiAlGa2(BO3)4 have been grown by spontaneous crystallization with molten flux based on a Bi2O3–B2O3 solvent. From single crystal X-ray diffraction measurement, BiAlGa2(BO3)4 has been found to crystallize in the trigonal huntite structure type, space group R32, with cell dimensions a = 9.4433(9) and c = 7.4130(10) Å. The diffuse reflectance spectrum on a powder sample indicated that the short-wavelength absorption edge of BiAlGa2(BO3)4 extends to approximately 271 nm. Second-harmonic generation (SHG) on powder samples has been measured using Kurtz and Perry technique, which indicated that BiAlGa2(BO3)4 is a phase-matchable material, and its SHG coefficient is measured to be four times as large as that of KDP.  相似文献   

18.
The temperature dependence of the heat capacity C p = f(T) of CaNi0.5Zr1.5(PO4)3 crystalline phosphate is studied by precision adiabatic vacuum and differential scanning calorimetry over the temperature range of 7–640 K. Its standard thermodynamic functions C p (T), H (T)-H (0), S (T), and G (T)-H (0) for the region T → 0 to 640 K and the standard entropy of formation at T = 298.15 K are calculated from the obtained experimental data. Using data on the low-temperature (30–50 K) heat capacity, the D fractal dimension of phosphate is determined and conclusions about the character of the topology of its structure have been made. The final results are compared to data from thermodynamic investigations of the structurally related crystalline phosphates Zr3(PO4)4, Ni0.5Zr2(PO4)3, and Ca0.5Zr2(PO4)3.  相似文献   

19.
The temperature dependence of the heat capacity of crystalline barium zirconium phosphate C p o  = f(T) was measured over the temperature range 6–612 K. The experimental data obtained were used to calculate the standard thermodynamic functions C p o (T), H°(T) ? H°(0), S°(T), G°(T) ? H°(0) over the temperature range from T → 0 to 610 K and standard entropy of formation at 298.15 K. The data on the low-temperature (6 ≤ T/K ≤ 50) heat capacity were used to determine the fractal dimension of Ba0.5Zr2(PO4)3. Conclusions concerning the topology of the structure of phosphate were drawn. Thermodynamic properties of M0.5Zr2(PO4)3 (M = Ca, Sr, Ba) were compared.  相似文献   

20.
Glasses with compositions 60Bi2O3–(40?x)B2O3–xGa2O3 (x = 5, 10, 15, 20 mol%) are prepared by conventional melting method. The thermal properties are investigated by differential thermal analysis (DTA) and the structures of the glasses were probed by Infrared, Raman and X-ray photoelectron spectroscopy (XPS). The results show that density, refractive index and optical basicity increase with the increase of Ga2O3. The glass transition temperature (Tg), the onset crystallization temperature (Tx), ΔT (Tx?Tg) decrease with the content of Ga2O3. The cut-off edges in ultraviolet and infrared shift to longer wavelength with the increase of Ga2O3. On the other hand, the addition of Ga2O3 causes a progressive coordination number change of the boron atom from 3 to 4. XPS result indicates both Bi5+ and Bi3+ exist in 5 mol% Ga2O3 content, while Bi5+ amounts decrease with the increase of Ga2O3 contents. The glass is mainly composed of [BiO6], [BO3], [BO4] and [GaO4] polyhedra. Glasses are supposed to have layer structure. [BO3] triangle and [BO4] tetrahedra may be located between the [GaO4] tetrahedral and [BiO6] octahedra to prevent crystallization and to compensate electric charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号