首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the yield stress of ferrofluid-based magnetorheological fluids (F-MRF) was investigated. The fluids are composed of a ferrofluid as the liquid carrier and micro-sized iron particles as magnetic particles. The physical and magnetorheological properties of the F-MRF have been investigated and compared with a commercial mineral oil-based MR fluid. With the addition of a ferrofluid, the anti-sedimentation property of the commercial MR fluids could be significantly improved. The static yield stress of the F-MRF samples with four different weight fractions (ϕ) of micro-sized iron particles were measured using three different testing modes under various magnetic fields. The effects of weight fraction, magnetic strength, and test mode on the yielding stress have been systematically studied. Finally, a scaling relation, , was proposed for the yield stress modeling of the F-MRF system.  相似文献   

2.
In the present article, the rheological responses and dispersion stability of magnetorheological (MR) fluids were investigated experimentally. Suspensions of magnetite and carbonyl iron particles were prepared as model MR fluids. Under an external magnetic field (H 0) and a steady shear flow, the yield stress depends upon H 0 3/2. The Yield stress depended on the volume fraction of the particle (φ) linearly only at low concentration and increased faster at high fraction. Rheological behavior of MR fluids subjected to a small-strain oscillatory shear flow was investigated as a function of the strain amplitude, frequency, and the external magnetic field. In order to improve the stability of MR fluid, ferromagnetic Co-γ-Fe2O3 and CrO2 particles were added as the stabilizing and thickening agent in the carbonyl iron suspension. Such needle-like particles seem to play a role in the steric repulsion between the relatively large carbonyl iron particles, resulting in improved stability against rapid sedimentation of dense iron particles. Furthermore, the additive-containing MR suspensions exhibited larger yield stress, especially at higher magnetic field strength. Received: 4 April 2000 Accepted: 6 November 2000  相似文献   

3.
The effect of magnetic field-induced particle chaining on the magnetorheology of commercial iron oxide-based ferrofluids was investigated by comparison of a ferrofluid with particles that resist chaining and a ferrofluid with particles that interact when a field is applied, forming chain-like aggregates. This difference between the two ferrofluids was confirmed by optical microscopy and dynamic light scattering in an applied magnetic field. Both fluids had similar magnetic particle fraction, but showed different magnetorheological behavior. Chaining resulted in a stronger magnetic field-dependent viscosity enhancement and the appearance of an elastic modulus. The magnetorheology of these two fluids was described using the Mason number (Mn), resulting in two distinct Mn power law slopes at intermediate and small Mn values for the ferrofluid with magnetic field-induced aggregation. The commonly used magnetic coupling parameter failed to distinguish the behavior of the two ferrofluids.  相似文献   

4.
This paper presents the measurement of the thermal conductivity and the dynamic viscosity of Al2O3-water (1-4% particle volume fraction) and TiO2-water (1-6% particle volume fraction) nano-fluids carried out at atmospheric pressure in the temperature range from 1 to 40 °C, which is particularly interesting for the application of nano-fluids as thermal medium in refrigeration and air-conditioning.The thermal conductivity measurement was performed by using a Transient Hot Disk TPS 2500S apparatus instrumented with a 7577 probe (2.001 mm in radius) having a maximum uncertainty (= 2) lower than ±5.0% of the reading. The dynamic viscosity measurement and the rheological analysis were carried out by a rotating disc type rheometer Haake Mars II instrumented with a single cone probe (60 mm in diameter and 1° angle) having a maximum uncertainty (= 2) lower than ±5.0% of the reading.The thermal conductivity measurements of the tested nano-fluids show a great sensitivity to particle volume fraction and temperature and a weak sensitivity to cluster average size: TiO2-water and Al2O3-water nano-fluids show a thermal conductivity enhancement (with reference to pure water) from −2 to 16% and from −2 to 23% respectively.TiO2-water and Al2O3-water nano-fluids exhibit a Newtonian behaviour in all the investigated ranges of temperature and nano-particle volume fraction. The relative viscosity shows a great sensitivity to particle volume fraction and cluster average size and no sensitivity to temperature: TiO2-water and Al2O3-water nano-fluids show a dynamic viscosity increase with respect to pure water from 17 to 210% and from 15 to 150% respectively.Al2O3-water nano-fluid seems to be more promising as thermal medium than TiO2-water nano-fluid, particularly at low thermal level (between ambient temperature and ice point) where TiO2-water is not suitable showing worse performance than pure water.Present experimental measurements were compared both with available measurements carried out by different researchers and computational models for thermophysical properties of suspensions.  相似文献   

5.
A quasi-static asymptotic analysis is employed to investigate the elastic effects of fluids on the shear viscosity of highly concentrated suspensions at low and high shear rates. First a brief discussion is presented on the difference between a quasi-static analysis and the periodic-dynamic approach. The critical point is based on the different order-of-contact time between particles. By considering the motions between a particle withN near contact point particles in a two-dimensional “cell” structure and incorporating the concept of shear-dependent maximum packing fraction reveals the structural evolution of the suspension under shear and a newly asymptotic framework is devised. In order to separate the influence of different elastic mechanisms, the second-order Rivlin-Ericksen fluid assumption for describing normal-stress coefficients at low shear rates and Harnoy's constitutive equation for accounting for the stress relaxation mechanism at high shear rates are employed. The derived formulation shows that the relative shear viscosity is characterized by a recoverable shear strain,S R at low shear rates if the second normal-stress difference can be neglected, and Deborah number,De, at high shear rates. The predicted values of the viscosities increase withS R , but decrease withDe. The role ofS R in the matrix is more pronounced than that ofDe. These tendencies are significant when the maximum packing fraction is considered to be shear-dependent. The results are consistent with that of Frankel and Acrivos in the case of a Newtonian suspension, except for when the different divergent threshhold is given as [1 ? (Φ/Φ m )1/2] ? 1.  相似文献   

6.
The tensile deformation of nanocrystalline α-Fe2O3+fcc-Al composites at room temperature is analyzed using molecular dynamics (MD) simulations. The analyses focus on the effects of variations in grain size and phase volume fraction on strength. For comparison purposes, nanostructures of different phase volume fractions at each grain size are given the same grain morphologies and the same grain orientation distribution. Calculations show that the effects of the fraction of grain boundary (GB) atoms and the electrostatic forces between atoms on deformation are strongly correlated with the volume fractions of the Al and Fe2O3 phases. In the case of nanocrystalline Al where electrostatic forces are absent, dislocation emission initiates primarily from high-angle GBs. For the composites, dislocations emits from both low-angle and high-angle GBs due to the electrostatic effect of Al-Fe2O3 interfaces. The effect of the interfaces is stronger in structures with smaller average grain sizes primarily because of the higher fractions of atoms in interfaces at smaller grain sizes. At all grain sizes, the strength of the composite lies between those of the corresponding nanocrystalline Al and Fe2O3 structures. Inverse Hall-Petch (H-P) relations are observed for all structures analyzed due to the fact that GB sliding is the dominant deformation mechanism. The slopes of the inverse H-P relations are strongly influenced by the fraction of GB atoms, atoms associated with defects, and the volume fractions of the Al and Fe2O3 phases.  相似文献   

7.
The effect of suspended CuO nanoparticles on the mass transfer to a rotating disc electrode was investigated experimentally, using the electrochemical limiting diffusion current technique. The particle volume fraction was from 0.39% to 1.94%. The rotating speed ranged from 100 to 1000 rpm, which yielded the Reynolds number between 10 and 110, based on the electrochemically active disc radius. The results showed that the addition of the suspended particles increased the limiting current and the plot of log I vs. log ω resulted in linear lines, of which slopes decreased with increasing particle volume fraction. The ratio of Sh/Sho ranged from 1 to 1.5. The Sherwood number correlation as function of the Reynolds number and the particle volume fraction was also given.  相似文献   

8.
Novel smart thermoplastic magnetorheological elastomer composites containing micron-sized magnetic carbonyl iron (CI) particles were prepared with a poly(styrene-ethylene-butylene-styrene) (SEBS) triblock copolymer utilized as the thermoplastic matrix rubber, and the structures and properties of the CI-SEBS composites were examined. The CI particles were uniformly dispersed in the composites prepared in the absence of the magnetic field at high temperatures T (>T $_{\rm g}^{\rm S})$ , and this isotropic composite exhibited a larger storage modulus G?? compared to the SEBS matrix at room temperature (<?<T $_{\rm g}^{\rm S})$ where the EB phase therein was rubbery while the PS phase was in the glassy state. In contrast, the SEBS composite prepared under the magnetic field (with the intensity ???< 2.5?T) at high T (>T $_{\rm g}^{\rm S})$ contained a chain structure of CI particles. This chain structure became longer and better aligned on an increase of ?? up to a saturation of the particle magnetization and on an increase of the time interval of applying the field (that allowed the particles to move and equilibrate their aligned structure). The modulus G?? of this ??pre-structured?? composite measured for both cases of ?? = 0 and ???> 0 in the direction perpendicular to the chain structure at room temperature was enhanced compared to G?? of the isotropic composites. This difference of the filler effect (for ???=?0) and the magnetorheological effect (for ???> 0) between the pre-structured and isotropic composites was enhanced when the chain structure of the CI particles in the pre-structured composites became longer and better aligned. A mechanism(s) of this enhancement was discussed in relation to the morphologies (particle distribution) in the composites with the aid of a filler model and a molecular expression of the stress due to magnetically interacting particles.  相似文献   

9.
Ionic liquids (ILs) have been recently proposed as carrier for magnetorheological (MR) fluids. Their special properties, such as very low vapor pressure and high thermal stability, make ILs highly suitable dispersion media to increase the broad range of technological applications that magnetorheological fluids already have. It has been just reported that using ILs as carriers in MR fluids an improvement in the colloidal stability and suspension redispersibility is obtained. In this work, the magnetorheological behavior of highly concentrated suspensions in ILs is studied. Two kinds of suspensions were analyzed: using an ionic liquid of low conductivity and a mineral oil as carriers. In both cases, silica-coated iron microparticles were used as solid phase, being the solid volume concentration of 50% vol. A complete magnetorheological analysis focused on the wall slip phenomenon was performed. Steady-state and oscillatory experiments were carried out. In order to study wall slip effects, all experiments were performed with a plate–plate system, using both smooth and rough measuring surfaces. A significant effect of wall slip was observed when the experiments were performed using smooth surfaces. The novelty of this paper is mainly based on (1) the use of an ionic liquid as carrier to prepare magnetic suspensions, and?(2) the analysis of wall slip phenomena in MR fluids with a particle content close to the maximum packing fraction.  相似文献   

10.
This paper reports the growth of octahedral magnetic Fe3O4 particles from iron powders via a simple alkaline hydrothermal process. The chemical compositions and morphologies of the as-grown Fe3O4 particles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and scanning electron microscopy (SEM). Structure characterization showed that the phase structure of the prepared particles evolved from α-Fe to pure Fe3O4 with increasing concentration of KOH, indicating the important role of KOH concentration on the formation of the magnetite octahedron. The magnetic properties of samples were also studied by means of a vibrating sample magnetometer (VSM). The pure magnetite Fe3O4 octahedrons exhibited a relatively high saturation magnetization of 96.7 emu/g.  相似文献   

11.
The altered free volume state (AFVS) approach developed by Kulkarni and Mashelkar has been extended to develop a model for the viscosity of polymer solutions. The effect of polymer concentration, molecular weight and electrolyte concentration is shown to be satisfactorily explained in the framework of AFVS model. The regimes of viscosity behaviour have been defined for the systems investigated and the transitions involved identified. The approach leads to the identification of a surprisingly simple and unique scaling parameterΦ P, which enables excellent concentration-molecular weight superposition.  相似文献   

12.
It is shown that in a truly bimodal coal-water slurry the hydrodynamic interactions between the coarse particles impose on the fine fraction a shear rate higher than that applied externally by the viscometer walls. A semi-empirical function of the coarse volume fraction is obtained for this correction factor to the applied shear rate. The derivation of this shear correction factor is based on lubrication concepts and introduces the maximum packing fraction,ø m, at which flow can take place.ø m is obtainable from a simple dry packing experiment. It is shown that the contribution of the coarse particles to the viscosity rise can be successfully described by a viscosity model employing the same concepts used to derive the shear correction factor. The bimodal model is applied in the high shear limit to polymodal coal slurries with a continuous particle size distribution. In the model, the contribution of the coarse particles to the viscosity rise is taken from separate viscosity measurements for the coarse coal particles, while the contribution to the viscosity of the fine coal particles is taken to be that given by the measured viscosity of colloidal suspensions of monomodal rigid spheres. It is shown that there is a ratio of coarse to fine fraction volumes in the continuous size distribution, corresponding to a specific separating particle size, for which the measured viscosities of the polymodal slurries match almost perfectly over the whole solids volume fraction range with the viscosity values obtained using the bimodal approach. The match is found to be relatively insensitive to the precise value of the separating particle size.  相似文献   

13.
We study the cluster statistics and the viscosity of a two-dimensional suspension of passive macroscopic spheres undergoing shear. The second moment of the finite cluster statistics exhibits a maximum for a 2-D concentrationΦ S near 0.67 without measurable anomaly in the viscosity. The results of the cluster statistics are compared to those obtained in percolation.  相似文献   

14.
Electrorheological (ER) fluids composed of α-Fe2O3 (hematite) particles suspended in silicone oil are studied in this work. The rheological response has been characterized as a function of field strength, shear rate and volume fraction. Rheological tests under DC electric fields elucidated the influence of the electric field strength, E, and volume fraction, ϕ, on the field-dependent yield stress, τy. It was found that this quantity scales with E and ϕ with a linear and parabolic dependence, respectively. The viscosities of electrified suspensions were found to increase by several orders of magnitude as compared to the unelectrified suspension at low shear rates, although at high-shear rates hydrodynamic effects become dominant and no effects of the electric field on the viscosity are observed. The work is completed with the analysis of microscopic observations of the structure acquired by the ER fluid upon application of a constant electric field. Electrohydrodynamic convection is found to be the origin of the ER response rather than the commonly admitted particle fibrillation. This fact can provide an explanation to the relationship between yield stress and electric field strength as well as the pattern of periodic structures observed in the measurement geometries.  相似文献   

15.
The tunable rheological properties of magnetorheological (MR) materials at high shear rates are studied using a piston-driven flow-mode-type rheometer. The proposed method provides measurement of the apparent viscosity and yield stress of MR fluids for a shear rate range of 50 to 40,000 s−1. The rheological properties of a commercial MR fluid, as well as a newly developed MR polymeric gel, and a ferrofluid-based MR fluid are investigated. The results for apparent viscosity and dynamic and static shear stresses under different applied magnetic fields are reported.  相似文献   

16.
The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and Al2O3. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical methods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ = 2.5 when Ra = 106 while at λ = 1.5 for other Rayleigh numbers.  相似文献   

17.
In this work, we describe methods for the preparation of suspensions of micron-sized iron particles grafted with different surfactants. The aim is to obtain well-dispersed magnetorheological (MR) fluids. The effectiveness of the surfactants as dispersants was analyzed quantitatively by means of rheological measurements. With this objective, the viscosity of the suspensions was measured, and the results were compared with the prediction of the Batchelor’s formula (Batchelor, J Fluid Mech 83:97–117, 1977). The effect of dispersion on the MR properties of the suspensions was also studied. It was found that the quality of the dispersion of a suspension does not have an important effect on the magnitude of the field-induced yield stress but does on the change of viscosity induced by the field. It was also found that the transition from the solid-like state to the liquid-like one happens very smoothly for well-dispersed suspensions, contrarily to the abrupt transition for poorly dispersed suspensions.  相似文献   

18.
ZrO2 nanoparticle dispersions containing associative polymers exhibit two relaxation modes: Maxwellian behavior at high frequency imparted by the associating polymers and a power law spectrum at low frequency generated by the particle dynamics. The timescales and volume fraction dependence of the dispersions reflect weak attractions between particles with adsorbed polymer layers dispersed in a percolated network of associative polymer. The Baxter stickiness parameter extracted from the high frequency viscosity data indicates strong attractions, whereas the high frequency modulus reveals three sources of elasticity: micelle–micelle associations in the solution, rigidity of the particles and adsorbed layer, and adsorbed layer–adsorbed layer interactions. The sol-gel transition of the dispersions occurs around 12–14% particle loading. Comparison with latex dispersions suggests a slower relaxation mode and greater rigidity with the ZrO2 particles.  相似文献   

19.
在 MM- 2 0 0型环块磨损试验机上 ,以 HT2 0 0材料为摩擦偶件 (环 ) ,研究了含不同体积分数 Ti C颗粒的原位合成 Ti Cp/ Al复合材料表层的摩擦磨损性能 .结果表明 :当 Ti C体积分数小于 2 0 %时 ,随着体积分数增加熔覆层的磨损量逐渐减小 ;而当体积分数大于 2 5 %时 ,随着体积分数的增加熔覆层的磨损量反而逐渐增大 ;与 DL 7和 ZL 10 4材料相比 ,当颗粒体积分数为 2 0 %时 ,复合材料表层的磨损量只有 DL 7材料的 2 6 .7% ,ZL 10 4材料的 5 6 .5 % ;此外 Ti C颗粒体积分数对摩擦系数的影响不大  相似文献   

20.
This paper proposes a new homogenization framework for magnetoelastic composites accounting for the effect of magnetic dipole interactions, as well as finite strains. In addition, it provides an application for magnetorheological elastomers via a “partial decoupling” approximation splitting the magnetoelastic energy into a purely mechanical component, together with a magnetostatic component evaluated in the deformed configuration of the composite, as estimated by means of the purely mechanical solution of the problem. It is argued that the resulting constitutive model for the material, which can account for the initial volume fraction, average shape, orientation and distribution of the magnetically anisotropic, non-spherical particles, should be quite accurate at least for perfectly aligned magnetic and mechanical loadings. The theory predicts the existence of certain “extra” stresses—arising in the composite beyond the purely mechanical and magnetic (Maxwell) stresses—which can be directly linked to deformation-induced changes in the microstructure. For the special case of isotropic distributions of magnetically isotropic, spherical particles, the extra stresses are due to changes in the particle two-point distribution function with the deformation, and are of order volume fraction squared, while the corresponding extra stresses for the case of aligned, ellipsoidal particles can be of order volume fraction, when changes are induced by the deformation in the orientation of the particles. The theory is capable of handling the strongly nonlinear effects associated with finite strains and magnetic saturation of the particles at sufficiently high deformations and magnetic fields, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号