首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《Nuclear Physics A》1987,464(4):740-768
An equation of state for cold nuclear matter for the region of densities ρnm−4ρnm, where ρnm is empirical nuclear-matter density, is constructed. We begin from the detailed calculation of Day and Wiringa for the two-body interactions; these give a saturation density of ∼2ρnm. This density is brought down to ρnm by the addition of relativistic corrections. Additional binding is obtained from three-body forces. A reasonable picture is obtained with the Day-Wiringa compression modulus for the two-body calculation, but the picture can be further improved by choosing this to be smaller.Our equation of state is similar to that of Friedman and Pandharipande in the region of nuclear matter denstiy ρnm, but, due to higher-order terms in the loop correction, is substantially softer at high density. Basically what happens is that the many-body effects saturate with increasing density, leaving only the two-body interactions.With this equation of state, prompt supernova explosions are very powerful when the compression modulus of neutron-rich matter (twice as many neutrons as protons) is ∼150 MeV, which corresponds to Knm ∼ 190 MeV for symmetric nuclear matter.Analysis shows that hot nuclear matter formed in heavy ion collisions demands a very stiff equation of state. We understand this as arising from the strong velocity dependence in the real part of the optical model potential which follows chiefly from the Lorentz character of the interactions, the vector mean field growing with increasing density and the scalar one decreasing. This gives a substantial repulsive contribution to the energy per particle and produces a stiff effective equation of state for several hundred MeV heavy-ion collisions. With increasing degree of equilibration the magnitude of the repulsive energy decreases since equilibration decreases the effective momentum. Given the strong velocity dependence in the interaction, the hot equation of state can be reconciled with the cool one.  相似文献   

2.
We consider a metric model of 4-space with the conformai Weyl parameter depending on the state of the charged matter. We show that there exists a version of the theory that allows unification of gravitation and electrodynamics based on geometry with an additional dynamical connection. We give equations for geodesies, curvature tensors, and the Ricci and scalar curvatures. Within the framework of the model, we obtain the Einstein equations as well as Maxwell-type equations that contain a nonlinearity analogous to the nonlinearity of the Einstein equations. We find an exact solution for the case of a static, homogeneous spherical charge distribution. The internal solution has a region of singular attraction and repulsion of like-charged matter.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 85–91, November, 1991.  相似文献   

3.
The equation of state of the newborn neutron star matter with untrapped neutrinos is calculated with the AV18 potential along isentropic paths. The same calculations are done with the AV14 potential for the sake of comparison. Temperature–density correlation, proton fraction, adiabatic index, and the velocity of sound are also obtained at different entropies. It is shown that the proton fraction (adiabatic index) increases (decreases) by increasing entropy. We have shown that our calculated equations of state obey the causality condition. The results are compared with those of others in the literature.  相似文献   

4.
We investigate observational constraint on the variable generalized Chaplygin gas (VGCG) model as the unification of dark matter and dark energy by using the Union supernovae sample and the baryon acoustic oscillations data. Based on the best fit parameters for VGCG model it is shown that the current value of equation of state for dark energy is w0de=−1.08<−1, and the universe will not end up with big rip in the future. In addition, we also discuss the evolution of several quantities in VGCG cosmology such as deceleration parameter, fractional density parameters, growth index and sound speed. Finally, the statefinder diagnostic is performed to discriminate the VGCG with other models.  相似文献   

5.
Direct extrapolation of the strong interaction between quarks in pure perturbative calculation has a problem of thermodynamic inconsistency.A new term determined by thermodynamic consistency requirement could resolve it.This new term plays an important role at lower density in describing the equation of state of quark matter,while it is negligible at high density.Accordingly,the density behavior of the sound velocity becomes more reasonable,and the maximum mass of quark stars can be as large as two times the solar mass.  相似文献   

6.
The modified gravitational equations to describe a four-dimensional braneworld in the case with the Lorentz invariant violation in a bulk spacetime is presented. It contains a trace part of the brane energy-momentum tensor and the coefficients of all terms describe the Lorentz violation effects from the bulk spacetime. As an application, we apply this formalism to study cosmology. In respect to standard effective Friedmann equations on the brane, Lorentz invariance violation in the bulk causes a modification of this equations that can lead to significant physical consequences. In particular, the effective Friedmann equation on the brane explicitly depends on the equation of state of the brane matter and the Lorentz violating parameters. We show that the components of five-dimensional Weyl curvature are related to the matter on brane even at low energies. We also find that the constraints on the theory parameters are depend on the equation of state of the energy components of the brane matter. Finally, the stability of the model depend on the specific choices of initial conditions and the parameters β i .  相似文献   

7.
Fast self sustained waves of chemical or phase transformations, observed in several contexts in condensed matter effectively result in “gasless detonation". The phenomenon is modelled by coupling the reaction diffusion equation, describing chemical or phase transformations, and the wave equation, describing elastic perturbations. The coupling considered in this work involves (i) a dependence of the sound velocity on the chemical (phase) field, and (ii) the destruction of the initial chemical equilibrium when the strain exceeds a critical value (strain induced phase transition). Both the case of an initially unstable state (first order kinetics) and metastable state (second order kinetics) are considered. An exhaustive analytic and numerical study of travelling waves reveals the existence of supersonic modes of transformations. The practically important problem of ignition of fast waves by mechanical perturbation is investigated. With the present model, the critical strain necessary to ignite gasless detonation by local perturbations is determined. Received 18 November 1999  相似文献   

8.
金丽玲  李建龙  徐文 《声学学报》2016,41(6):813-819
讨论了一种适用于浅海的时变声速剖面跟踪方法。该方法将时变水体声速剖面的反演问题建模为由描述声速剖面时变特性的状态方程与包含声压场局部测量信息的测量方程组成的状态-空间模型,提出利用自回归分析拟合方法将声速场扰动建模为高阶自回归演化模型,并通过集合卡尔曼滤波序贯地估计时间演化的海洋声速场。利用2001年亚洲海实验环境与声速测量数据,仿真分析了基于高阶自回归演化模型的时变声速剖面集合卡尔曼滤波估计方法。结果表明,相比于利用传统随机游走状态演化模型的估计方法,该改进方法可有效降低声速的跟踪误差,并且在较低信噪比条件下仍具有较好的跟踪性能。   相似文献   

9.
We suggest that the Big Bang could be a result of the first-order phase transition driven by a change in the scalar curvature of the 4D spacetime in an expanding cold Universe filled with a nonlinear scalar field φ and neutral matter with an equation of state p = νε (where p and ε are the pressure and energy density of the matter, respectively). We consider the Lagrangian of a scalar field with nonlinearity φ4 in a curved spacetime that, along with the term–ξR|φ|2 quadratic in φ (where ξ is the interaction constant between the scalar and gravitational fields and R is the scalar curvature), contains the term ξRφ0(φ + φ+) linear in φ, where φ0 is the vacuum mean of the scalar field amplitude. As a consequence, the condition for the existence of extrema of the scalar-field potential energy is reduced to an equation cubic in φ. Provided that ν > 1/3, the scalar curvature R = [κ(3ν–1)ε–4Λ] (where κ and Λ are Einstein’s gravitational and cosmological constants, respectively) decreases with decreasing ε as the Universe expands, and a first-order phase transition in variable “external field” parameter proportional to R occurs at some critical value R c < 0. Under certain conditions, the critical radius of the early Universe at the point of the first-order phase transition can reach an arbitrary large value, so that this scenario of unrestricted “inflation” of the Universe may be called “hyperinflation.” After the passage through the phase-transition point, the scalar-field potential energy should be rapidly released, which must lead to strong heating of the Universe, playing the role of the Big Bang.  相似文献   

10.
One soliton of particle velocity and its amplitude (maximum particle velocity of one soliton) in Toda lattice is given analytically. It has also been known numerically that the maximum particle velocity (when the collision of two solitons reaches their maximum, we define Vn at this time as its maximum particle velocity) during the collision of two solitons moving in the same direction is equal to the difference between the amplitudes of two solitons if the difference is large enough; however, the maximum particle velocity is equal to the adding up of the amplitudes of two solitons moving in the opposite directions. The relationship between the maximum value of e-(rn)-1 and their initial amplitude of e-(rn)-1 is also given analytically in Toda lattice if the amplitudes of the two solitons are the same and their moving directions are opposite. Compared with the Boussinesq equation, there are differences between the Toda lattice equation and the Boussinesq equation for solitons during the collision.  相似文献   

11.
We study the classical and the quantum structures of certain 5-d Kaluza-Klein cosmologies. These models were chosen because their 4-d restriction is a closed, radiation-dominated, homogeneous, isotropic cosmology in the usual sense. The extra (field) dimension is taken to be a circle. In these models the solution starts from a 5-d curvature singularity with infinite circumference for the circle and zero volume for the 3-space. It evolves in finite proper time to a solution with zero dimension for the extra field direction. In the 5-vacuum case this is not a curvature singularity, but is a singularity of the congruence describing the physics, and in particular, the solution cannot causally be extended to the future of this point. In the 5-vacuum case this event coincides with the maximum of expansion of the 5-space. In the 5-dust cases, this point is a real 5-d curvature singularity. By adjustment it can be made to occur before or after the maximum of 3-expansion. The solution stops at that instant, but the 4-cosmology revealsno pathology up to the crack of doom. The quantum behavior is identical in these respects to the classical one.  相似文献   

12.
Deconfinement phase transition and condensation of Goldstone bosons in neutron star matter are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. It is shown that the hadronic-CFL mixed phase (MP) exists in the center of neutron stars with a small bag constant, while the CFL quark matter cannot appear in neutron stars when a large bag constant is taken. Color superconductivity softens the equation of state (EOS) and decreases the maximum mass of neutron stars compared with the unpaired quark matter. The K0 condensation in the CFL phase has no remarkable contribution to the EOS and properties of neutron star matter. The EOS and the properties of neutron star matter are sensitive to the bag constant B, the strange quark mass ms and the color superconducting gap Δ. Increasing B and ms or decreasing Δ can stiffen the EOS which results in the larger maximum masses of neutron stars.  相似文献   

13.
The slip velocity of a rarefied gas nonuniform in temperature and mass velocity is calculated for gas slip over the surface of a right circular cylinder. The calculation uses the two-moment boundary condition in an approximation linear in Knudsen number. Corrections to the slip velocity that are due to the interface curvature, volume temperature stresses, and nonuniform temperature distribution in the Knudsen layer are studied as func-tions of the accommodation coefficients in the first two moments of the distribution function. The Bhatnagar-Gross-Krook model of the Boltzmann kinetic equation is employed as the basic equation for the gas state.  相似文献   

14.
For a given equation of state of neutron matter in the relativistic σ-ω model, ๏๏๏๏๏ including the vacuum fluctuation of neutron and σ meson, the properties of pure neutron star are studied. We find that the maximum mass of pure neutron star is ~ 2.0 M_{\odot}. At the same time, the influence of incompressibility of the nuclear matter to the properties of neutron star is also studied. We also find that the maximum mass of neutron stars decreases as equation of state of neutron matter becomes softer.  相似文献   

15.
16.
A model is set up for a homogeneous configuration having the equation of state of a liquid. The equation of motion for the configuration boundary is preserved. It is shown that the spatial curvature can alter during evolution and that the configuration type is dependent on r0/rg, in which r0 is the boundary at which the sign of the spatial curvature alters. It is found that there are configurations which collapse, ones which expand indefinitely, and ones whose final state is that of a static sphere described by the interior Schwarzschild solution. Dnepropetrovsk State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 12–17, March, 1998.  相似文献   

17.
A bilocal lattice meson field equation which is invariant underP 4×SO 2×SO 2×SO 2×SO 2, is investigated. A class of general solutions in terms of the Laguerre polynomials (products of 2-dimensional hydrogen atom wave-functions) is presented. The “atomic” wave-functions in “momentum”-space indicate that two particles (patrons) are in bound orconfined state and moving along elliptical orbits in “momentum”-space. Four Green's functions for the (bilocal lattice scalar) partialdifference equation are obtained. Theconvergence of one Green's function is rigorously proved and the convergence of others are conjectured.  相似文献   

18.
An approach for time-evolving sound speed profiles tracking in shallow water is discussed.The inversion of time-evolving sound speed profiles is modeled as a state-space estimation problem,which includes a state equation for predicting the time-evolving sound speed profile and a measurement equation for incorporating local acoustic measurements.In the paper,auto-regression(AR) method is introduced to obtain a high-order AR evolution model of the sound speed field time variations,and the ensemble Kalman filter is utilized to track the sound speed field.To validate the approach,the accuracy in sound speed estimation is analyzed via a numerical implementation using the ASIAEX experimental environment and the sound velocity measurement data.Compared with traditional approaches based on the state evolution represented as a random walk,simulation results show the proposed AR method can effectively reduce the tracking errors of sound speed,and still keep good tracking performance at low signal-to-noise ratios.  相似文献   

19.
Strange stars (ReSS) calculated from a realistic equation of state (EOS), that incorporate chiral symmetry restoration as well as deconfinement at high density [Phys. Lett. B 438 (1998) 123; Phys. Lett. B 447 (1999) 352, Addendum; Phys. Lett. B 467 (1999) 303, Erratum; Indian J. Phys. B 73 (1999) 377] show compact objects in the mass radius curve. We compare our calculations of incompressibility for this EOS with that of nuclear matter. One of the nuclear matter EOS has a continuous transition to ud-matter at about five times normal density. Another nuclear matter EOS incorporates density dependent coupling constants. From a look at the consequent velocity of sound, it is found that the transition to ud-matter seems necessary.  相似文献   

20.
在质量--密度相关模型下研究了CFL奇异夸克物质, 并将结果与传统的袋模型结果进行比较. 两个模型均表明, 在合理的参数范围内, CFL相比正常核物质更稳定. 然而, 低密度时声速的行为完全相反, 这使得CFL夸克星的最大质量在质量-密度相关模型下比袋模型大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号