首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
LetG be a graph and letf be a function defined on V(G) such that f(x) is a positive odd integer for everyx ? V(G). A spanning subgraphF ofG is called a [l,f]-odd factor of G if dF(x) ? {1,3,2026, f(x)} for every x ?V(G), whered F (x) denotes the degree of x inF. We discuss several conditions for a graphG to have a [1,f]-odd factor.  相似文献   

2.
Anf-coloring of a graphG=(V, E) is a coloring of edge setE such that each color appears at each vertexv ∈ V at mostf(v) times. The minimum number of colors needed tof-colorG is called thef-chromatic index χ′ f (G) ofG. Any graphG hasf-chromatic index equal to Δ f (G) or Δ f (G) + 1 where $\Delta _f (G) = \mathop {\max }\limits_{v \in V} \left\{ {\left\lceil {\frac{{d(v)}}{{f(v)}}} \right\rceil } \right\}$ . If χ′ f (G) = Δ f (G), thenG is ofC f 1; otherwiseG is ofC f 2. In this paper, the classification problem of complete graphs onf-coloring is solved completely.  相似文献   

3.
A connected graphG is said to beF-good if the Ramsey numberr(F, G) is equal to(x(F) ? 1)(p(G) ? 1) + s(F), wheres(F) is the minimum number of vertices in some color class under all vertex colorings by χ (F) colors. It is of interest to know which graphsF have the property that all trees areF-good. It is shown that any large tree isK(1, 1,m 1,m 2,...,m t )-good.  相似文献   

4.
LetG be a simple graph with vertex setV(G) and edge setE(G). A subsetS ofE(G) is called an edge cover ofG if the subgraph induced byS is a spanning subgraph ofG. The maximum number of edge covers which form a partition ofE(G) is called edge covering chromatic number ofG, denoted by χ′c(G). It known that for any graphG with minimum degreeδ,δ -1 ≤χ′c(G) ≤δ. If χ′c(G) =δ, thenG is called a graph of CI class, otherwiseG is called a graph of CII class. It is easy to prove that the problem of deciding whether a given graph is of CI class or CII class is NP-complete. In this paper, we consider the classification of nearly bipartite graph and give some sufficient conditions for a nearly bipartite graph to be of CI class.  相似文献   

5.
Vojtěch Rödl  Luboš Thoma 《Order》1995,12(4):351-374
We address the following decision problem: Instance: an undirected graphG. Problem: IsG a cover graph of a lattice? We prove that this problem is NP-complete. This extends results of Brightwell [5] and Ne?et?il and Rödl [12]. On the other hand, it follows from Alvarez theorem [2] that recognizing cover graphs of modular or distributive lattices is in P. An important tool in the proof of the first result is the following statement which may be of independent interest: Given an integerl, l?3, there exists an algorithm which for a graphG withn vertices yields, in time polynomial inn, a graphH with the number of vertices polynomial inn, and satisfying girth(H)?l and χ(H)=χ(G).  相似文献   

6.
A total k-coloring of a graph G is a coloring of V(G) ∪ E(G) using k colors such that no two adjacent or incident elements receive the same color.The total chromatic number χ〃(G) is the smallest integer k such that G has a total k-coloring.In this paper,it is proved that the total chromatic number of any graph G embedded in a surface Σ of Euler characteristic χ(Σ)≥0 is Δ(G) + 1 if Δ(G)≥10,where Δ(G) denotes the maximum degree of G.  相似文献   

7.
The problem of vertex labeling with a condition at distance two in a graph, is a variation of Hale’s channel assignment problem, which was first explored by Griggs and Yeh. For positive integerpq, the λ p,q -number of graph G, denoted λ(G;p, q), is the smallest span among all integer labellings ofV(G) such that vertices at distance two receive labels which differ by at leastq and adjacent vertices receive labels which differ by at leastp. Van den Heuvel and McGuinness have proved that λ(G;p, q) ≤ (4q-2) Δ+10p+38q-24 for any planar graphG with maximum degree Δ. In this paper, we studied the upper bound of λ p ,q-number of some planar graphs. It is proved that λ(G;p, q) ≤ (2q?1)Δ + 2(2p?1) ifG is an outerplanar graph and λ(G;p,q) ≤ (2q?1) Δ + 6p - 4q - 1 if G is a Halin graph.  相似文献   

8.
Let ?: E(G) → {1, 2, · · ·, k} be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if \(\sum\limits_{e \mathrel\backepsilon u} {\phi \left( e \right)} \ne \sum\limits_{e \mathrel\backepsilon v} {\phi \left( e \right)} \) for each edge uvE(G). The smallest value k for which G has such a coloring is denoted by χΣ(G), which makes sense for graphs containing no isolated edge (we call such graphs normal). It was conjectured by Flandrin et al. that χΣ(G) ≤ Δ(G) + 2 for all normal graphs, except for C5. Let mad(G) = \(\max \left\{ {\frac{{2\left| {E\left( h \right)} \right|}}{{\left| {V\left( H \right)} \right|}}|H \subseteq G} \right\}\) be the maximum average degree of G. In this paper, we prove that if G is a normal graph with Δ(G) ≥ 5 and mad(G) < 3 ? \(\frac{2}{{\Delta \left( G \right)}}\), then χΣ(G) ≤ Δ(G) + 1. This improves the previous results and the bound Δ(G) + 1 is sharp.  相似文献   

9.
When we wish to compute lower bounds for the chromatic number χ(G) of a graph G, it is of interest to know something about the ‘chromatic forcing number’ fχ(G), which is defined to be the least number of vertices in a subgraph H of G such that χ(H) = χ(G). We show here that for random graphs Gn,p with n vertices, fχ(Gn,p) is almost surely at least (12?ε)n, despite say the fact that the largest complete subgraph of Gn,p has only about log n vertices.  相似文献   

10.
A construction is given for two non-isomorphic graphs G and H such that χ(G; x, y) = χ(H; x, y). The two graphs can be made strict, and even 5-connected.  相似文献   

11.
In this paper, the notion of relative chromatic number χ(G, H) for a pair of graphs G, H, with H a full subgraph of G, is formulated; namely, χ(G, H) is the minimum number of new colors needed to extend any coloring of H to a coloring of G. It is shown that the four color conjecture (4CC) is equivalent to the conjecture (R4CC) that χ(G, H) ≤ 4 for any (possibly empty) full subgraph H of a planar graph G and also to the conjecture (CR3CC) that χ(G, H) ≤ 3 if H is a connected and nonempty full subgraph of planar G. Finally, relative coloring theorems on surfaces other than the plane or sphere are proved.  相似文献   

12.
Let G be a graph with chromatic number χ(G) and let t(G) be the minimum number of vertices in any color class among all χ(G)-vertex colorings of G. Let H′ be a connected graph and let H be a graph obtained by subdividing (adding extra vertices to) a fixed edge of H′. It is proved that if the order of H is sufficiently large, the ith Ramsey number ri(G, H) equals [((χ(G)?1)(|H|?1)+t(G)?1)i]+1.  相似文献   

13.
A celebrated result of Chvátal, Rödl, Szemerédi and Trotter states (in slightly weakened form) that, for every natural number Δ, there is a constant r Δ such that, for any connected n-vertex graph G with maximum degree Δ, the Ramsey number R(G,G) is at most r Δ n, provided n is sufficiently large. In 1987, Burr made a strong conjecture implying that one may take r Δ = Δ. However, Graham, Rödl and Ruciński showed, by taking G to be a suitable expander graph, that necessarily r Δ > 2 for some constant c>0. We show that the use of expanders is essential: if we impose the additional restriction that the bandwidth of G be at most some function β(n)=o(n), then R(G,G)≤(2χ(G)+4)n≤(2Δ+6)n, i.e., r Δ =2Δ+6 suffices. On the other hand, we show that Burr’s conjecture itself fails even for P n k , the kth power of a path P n . Brandt showed that for any c, if Δ is sufficiently large, there are connected n-vertex graphs G with Δ(G)≤Δ but R(G,K 3) > cn. We show that, given Δ and H, there are β>0 and n 0 such that, if G is a connected graph on nn 0 vertices with maximum degree at most Δ and bandwidth at most β n , then we have R(G,H)=(χ(H)?1)(n?1)+σ(H), where σ(H) is the smallest size of any part in any χ(H)-partition of H. We also show that the same conclusion holds without any restriction on the maximum degree of G if the bandwidth of G is at most ?(H) log n=log logn.  相似文献   

14.
Let G be a graph. The core of G, denoted by G Δ, is the subgraph of G induced by the vertices of degree Δ(G), where Δ(G) denotes the maximum degree of G. A k -edge coloring of G is a function f : E(G) → L such that |L| = k and f (e 1) ≠ f (e 2) for all two adjacent edges e 1 and e 2 of G. The chromatic index of G, denoted by χ′(G), is the minimum number k for which G has a k-edge coloring. A graph G is said to be Class 1 if χ′(G) = Δ(G) and Class 2 if χ′(G) = Δ(G) + 1. In this paper it is shown that every connected graph G of even order whose core is a cycle of order at most 13 is Class 1.  相似文献   

15.
A graph G homogeneously embeds in a graph H if for every vertex x of G and every vertex y of H there is an induced copy of G in H with x at y. The graph G uniformly embeds in H if for every vertex y of H there is an induced copy of G in H containing y. For positive integer k, let fk(G) (respectively, gk(G)) be the minimum order of a graph H whose edges can be k-coloured such that for each colour, G homogeneously embeds (respectively, uniformly embeds) in the graph given by V(H) and the edges of that colour. We investigate the values f2(G) and g2(G) for special classes of G, in particular when G is a star or balanced complete bipartite graph. Then we investigate fk(G) and gk(G) when k ≥ 3 and G is a complete graph.  相似文献   

16.
For a hypergraphG withv vertices ande i edges of sizei, the average vertex degree isd(G)= ∑ie 1/v. Callbalanced ifd(H)≦d(G) for all subhypergraphsH ofG. Let $$m(G) = \mathop {\max }\limits_{H \subseteqq G} d(H).$$ A hypergraphF is said to be abalanced extension ofG ifG?F, F is balanced andd(F)=m(G), i.e.F is balanced and does not increase the maximum average degree. It is shown that for every hypergraphG there exists a balanced extensionF ofG. Moreover everyr-uniform hypergraph has anr-uniform balanced extension. For a graphG let ext (G) denote the minimum number of vertices in any graph that is a balanced extension ofG. IfG hasn vertices, then an upper bound of the form ext(G) 1 n 2 is proved. This is best possible in the sense that ext(G)>c 2 n 2 for an infinite family of graphs. However for sufficiently dense graphs an improved upper bound ext(G) 3 n can be obtained, confirming a conjecture of P. Erdõs.  相似文献   

17.
Does there exist a functionf(r, n) such that each graphG with Z (G)≧f(r, n) contains either a complete subgraph of orderr or else two non-neighboringn-chromatic subgraphs? It is known thatf(r, 2) exists and we establish the existence off(r, 3). We also give some interesting results about graphs which do not contain two independent edges.  相似文献   

18.
We prove that a homogeneous space G/H, with G a locally compact group and H a closed subgroup of G, is amenable in the sense of Eymard–Greenleaf if and only if the quasiregular action πΦ of G on the unit sphere of the Orlicz space LΦ(G/H) for some N-function Φ ∈ Δ2 satisfies the Rao–Reiter condition (PΦ).  相似文献   

19.
A cycle of a bipartite graphG(V+, V?; E) is odd if its length is 2 (mod 4), even otherwise. An odd cycleC is node minimal if there is no odd cycleC′ of cardinality less than that ofC′ such that one of the following holds:C′ ∩V + ?CV + orC′ ∩V ? ?CV ?. In this paper we prove the following theorem for bipartite graphs: For a bipartite graphG, one of the following alternatives holds:
  • -All the cycles ofG are even.
  • -G has an odd chordless cycle.
  • -For every node minimal odd cycleC, there exist four nodes inC inducing a cycle of length four.
  • -An edge (u, v) ofG has the property that the removal ofu, v and their adjacent nodes disconnects the graphG.
  • To every (0, 1) matrixA we can associate a bipartite graphG(V+, V?; E), whereV + andV ? represent respectively the row set and the column set ofA and an edge (i,j) belongs toE if and only ifa ij = 1. The above theorem, applied to the graphG(V+, V?; E) can be used to show several properties of some classes of balanced and perfect matrices. In particular it implies a decomposition theorem for balanced matrices containing a node minimal odd cycleC, having the property that no four nodes ofC induce a cycle of length 4. The above theorem also yields a proof of the validity of the Strong Perfect Graph Conjecture for graphs that do not containK 4?e as an induced subgraph.  相似文献   

    20.
    LetV be a set ofn elements. The set of allk-subsets ofV is denoted . Ak-hypergraph G consists of avertex-set V(G) and anedgeset , wherek≥2. IfG is a 3-hypergraph, then the set of edges containing a given vertexvεV(G) define a graphG v . The graphs {G v νvεV(G)} aresubsumed byG. Each subsumed graphG v is a graph with vertex-setV(G) − v. They can form the set of vertex-deleted subgraphs of a graphH, that is, eachG v Hv, whereV(H)=V(G). In this case,G is a hypergraphic reconstruction ofH. We show that certain families of self-complementary graphsH can be reconstructed in this way by a hypergraphG, and thatG can be extended to a hypergraphG *, all of whose subsumed graphs are isomorphic toH, whereG andG * are self-complementary hypergraphs. In particular, the Paley graphs can be reconstructed in this way. This work was supported by an operating grant from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号