首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In this article, a novel objective penalty function as well as its second-order smoothing is introduced for constrained optimization problems (COP). It is shown that an optimal solution to the second-order smoothing objective penalty optimization problem is an optimal solution to the original optimization problem under some mild conditions. Based on the second-order smoothing objective penalty function, an algorithm that has better convergence is introduced. Numerical examples illustrate that this algorithm is efficient in solving COP.  相似文献   

2.
In this paper, an algorithm of barrier objective penalty function for inequality constrained optimization is studied and a conception–the stability of barrier objective penalty function is presented. It is proved that an approximate optimal solution may be obtained by solving a barrier objective penalty function for inequality constrained optimization problem when the barrier objective penalty function is stable. Under some conditions, the stability of barrier objective penalty function is proved for convex programming. Specially, the logarithmic barrier function of convex programming is stable. Based on the barrier objective penalty function, an algorithm is developed for finding an approximate optimal solution to an inequality constrained optimization problem and its convergence is also proved under some conditions. Finally, numerical experiments show that the barrier objective penalty function algorithm has better convergence than the classical barrier function algorithm.  相似文献   

3.
This article introduces a smoothing technique to the l1 exact penalty function. An application of the technique yields a twice continuously differentiable penalty function and a smoothed penalty problem. Under some mild conditions, the optimal solution to the smoothed penalty problem becomes an approximate optimal solution to the original constrained optimization problem. Based on the smoothed penalty problem, we propose an algorithm to solve the constrained optimization problem. Every limit point of the sequence generated by the algorithm is an optimal solution. Several numerical examples are presented to illustrate the performance of the proposed algorithm.  相似文献   

4.
《Optimization》2012,61(6):715-738
In this article, a nonlinear semidefinite program is reformulated into a mathematical program with a matrix equality constraint and a sequential quadratic penalty method is proposed to solve the latter problem. We discuss the differentiability and convexity of the penalty function. Necessary and sufficient conditions for the convergence of optimal values of penalty problems to that of the original semidefinite program are obtained. The convergence of optimal solutions of penalty problems to that of the original semidefinite program is also investigated. We show that any limit point of a sequence of stationary points of penalty problems satisfies the KKT optimality condition of the semidefinite program. Smoothed penalty problems that have the same order of smothness as the original semidefinite program are adopted. Corresponding results such as the convexity of the smoothed penalty function, the convergence of optimal values, optimal solutions and the stationary points of the smoothed penalty problems are obtained.  相似文献   

5.
Penalty methods are very efficient in finding an optimal solution to constrained optimization problems. In this paper, we present an objective penalty function with two penalty parameters for inequality constrained bilevel programming under the convexity assumption to the lower level problem. Under some conditions, an optimal solution to a bilevel programming defined by the objective penalty function is proved to be an optimal solution to the original bilevel programming. Moreover, based on the objective penalty function, an algorithm is developed to obtain an optimal solution to the original bilevel programming, with its convergence proved under some conditions.  相似文献   

6.
In the paper, we give a smoothing approximation to the nondifferentiable exact penalty function for nonlinear constrained optimization problems. Error estimations are obtained among the optimal objective function values of the smoothed penalty problems, of the nonsmooth penalty problem and of the original problem. An algorithm based on our smoothing function is given, which is showed to be globally convergent under some mild conditions.  相似文献   

7.
论文研究了一种双层规划的光滑化目标罚函数算法,在一些条件下,证明了光滑化罚优化问题等价于原双层规划问题,而且,当下层规划问题是凸规划问题时, 给出了一个求解算法和收敛性证明.  相似文献   

8.
Penalty function is an important tool in solving many constrained optimization problems in areas such as industrial design and management. In this paper, we study exactness and algorithm of an objective penalty function for inequality constrained optimization. In terms of exactness, this objective penalty function is at least as good as traditional exact penalty functions. Especially, in the case of a global solution, the exactness of the proposed objective penalty function shows a significant advantage. The sufficient and necessary stability condition used to determine whether the objective penalty function is exact for a global solution is proved. Based on the objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions. Furthermore, the sufficient and necessary calmness condition on the exactness of the objective penalty function is proved for a local solution. An algorithm is presented in the paper in finding a local solution, with its convergence proved under some conditions. Finally, numerical experiments show that a satisfactory approximate optimal solution can be obtained by the proposed algorithm.  相似文献   

9.
We introduce the concept of partially strictly monotone functions and apply it to construct a class of nonlinear penalty functions for a constrained optimization problem. This class of nonlinear penalty functions includes some (nonlinear) penalty functions currently used in the literature as special cases. Assuming that the perturbation function is lower semi-continuous, we prove that the sequence of optimal values of nonlinear penalty problems converges to that of the original constrained optimization problem. First-order and second-order necessary optimality conditions of nonlinear penalty problems are derived by converting the optimality of penalty problems into that of a smooth constrained vector optimization problem. This approach allows for a concise derivation of optimality conditions of nonlinear penalty problems. Finally, we prove that each limit point of the second-order stationary points of the nonlinear penalty problems is a second-order stationary point of the original constrained optimization problem.  相似文献   

10.
Augmented Lagrangian function is one of the most important tools used in solving some constrained optimization problems. In this article, we study an augmented Lagrangian objective penalty function and a modified augmented Lagrangian objective penalty function for inequality constrained optimization problems. First, we prove the dual properties of the augmented Lagrangian objective penalty function, which are at least as good as the traditional Lagrangian function's. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker condition. This is especially so when the Karush-Kuhn-Tucker condition holds for convex programming of its saddle point existence. Second, we prove the dual properties of the modified augmented Lagrangian objective penalty function. For a global optimal solution, when the exactness of the modified augmented Lagrangian objective penalty function holds, its saddle point exists. The sufficient and necessary stability conditions used to determine whether the modified augmented Lagrangian objective penalty function is exact for a global solution is proved. Based on the modified augmented Lagrangian objective penalty function, an algorithm is developed to find a global solution to an inequality constrained optimization problem, and its global convergence is also proved under some conditions. Furthermore, the sufficient and necessary calmness condition on the exactness of the modified augmented Lagrangian objective penalty function is proved for a local solution. An algorithm is presented in finding a local solution, with its convergence proved under some conditions.  相似文献   

11.
In this paper we propose two methods for smoothing a nonsmooth square-root exact penalty function for inequality constrained optimization. Error estimations are obtained among the optimal objective function values of the smoothed penalty problem, of the nonsmooth penalty problem and of the original optimization problem. We develop an algorithm for solving the optimization problem based on the smoothed penalty function and prove the convergence of the algorithm. The efficiency of the smoothed penalty function is illustrated with some numerical examples, which show that the algorithm seems efficient.  相似文献   

12.
本文利用不连续罚函数方法将带有不等式约束的全局优化问题的求解转化为 讨论一非线性方程的求根问题,从而得到若干个全局最优性条件.  相似文献   

13.
In this two-part study, we develop a unified approach to the analysis of the global exactness of various penalty and augmented Lagrangian functions for constrained optimization problems in finite-dimensional spaces. This approach allows one to verify in a simple and straightforward manner whether a given penalty/augmented Lagrangian function is exact, i.e., whether the problem of unconstrained minimization of this function is equivalent (in some sense) to the original constrained problem, provided the penalty parameter is sufficiently large. Our approach is based on the so-called localization principle that reduces the study of global exactness to a local analysis of a chosen merit function near globally optimal solutions. In turn, such local analysis can be performed with the use of optimality conditions and constraint qualifications. In the first paper, we introduce the concept of global parametric exactness and derive the localization principle in the parametric form. With the use of this version of the localization principle, we recover existing simple, necessary, and sufficient conditions for the global exactness of linear penalty functions and for the existence of augmented Lagrange multipliers of Rockafellar–Wets’ augmented Lagrangian. We also present completely new necessary and sufficient conditions for the global exactness of general nonlinear penalty functions and for the global exactness of a continuously differentiable penalty function for nonlinear second-order cone programming problems. We briefly discuss how one can construct a continuously differentiable exact penalty function for nonlinear semidefinite programming problems as well.  相似文献   

14.
Under the framework of switched systems, this paper considers a multi-proportional-integral-derivative controller parameter tuning problem with terminal equality constraints and continuous-time inequality constraints. The switching time and controller parameters are decision variables to be chosen optimally. Firstly, we transform the optimal control problem into an equivalent problem with fixed switching instants by introducing an auxiliary function and a time-scaling transformation. Because of the complexity of constraints, it is difficult to solve the problem by conventional optimization techniques. To overcome this difficulty, a novel exact penalty function is introduced for these constraints. Furthermore, the penalty function is appended to the cost functional to form an augmented cost functional, giving rise to an approximate nonlinear parameter optimization problem that can be solved using any gradient-based method. Convergence results indicate that any local optimal solution of the approximate problem is also a local optimal solution of the original problem as long as the penalty parameter is sufficiently large. Finally, an example is provided to illustrate the effectiveness of the developed algorithm.  相似文献   

15.
In this paper, we study a class of penalty methods for a class of constrained scalar set-valued optimization problems. We establish an equivalence relation between the lower semicontinuity at the origin of the optimal value function of the perturbed problem and the convergence of the penalty methods. Some sufficient conditions that guarantee the convergence of the penalty methods are also derived.  相似文献   

16.
介绍一种非线性约束优化的不可微平方根罚函数,为这种非光滑罚函数提出了一个新的光滑化函数和对应的罚优化问题,获得了原问题与光滑化罚优化问题目标之间的误差估计. 基于这种罚函数,提出了一个算法和收敛性证明,数值例子表明算法对解决非线性约束优化具有有效性.  相似文献   

17.
In this work, we reformulate the inverse optimal value problem equivalently as a corresponding nonlinear bilevel programming (BLP) problem. For the nonlinear BLP problem, the duality gap of the lower level problem is appended to the upper level objective with a penalty, and then a penalized problem is obtained. On the basis of the concept of partial calmness, we prove that the penalty function is exact. Then, an algorithm is proposed and an inverse optimal value problem is resolved to illustrate the algorithm.  相似文献   

18.
This paper presents the stability of difference approximations of an optimal control problem for a quasilinear parabolic equation with controls in the coefficients, boundary conditions and additional restrictions. The optimal control problem has been convered to one of the optimization problem using a penalty function technique. The difference approximations problem for the considered problem is obtained. The estimations of stability of the solution of difference approximations problem are proved. The stability estimation of the solution of difference approximations problem by the controls is obtained.  相似文献   

19.
In the paper, we consider the exact minimax penalty function method used for solving a general nondifferentiable extremum problem with both inequality and equality constraints. We analyze the relationship between an optimal solution in the given constrained extremum problem and a minimizer in its associated penalized optimization problem with the exact minimax penalty function under the assumption of convexity of the functions constituting the considered optimization problem (with the exception of those equality constraint functions for which the associated Lagrange multipliers are negative—these functions should be assumed to be concave). The lower bound of the penalty parameter is given such that, for every value of the penalty parameter above the threshold, the equivalence holds between the set of optimal solutions in the given extremum problem and the set of minimizers in its associated penalized optimization problem with the exact minimax penalty function.  相似文献   

20.
In this paper, we introduce a new notion of augmenting function known as indicator augmenting function to establish a minmax type duality relation, existence of a path of solution converging to optimal value and a zero duality gap relation for a nonconvex primal problem and the corresponding Lagrangian dual problem. We also obtain necessary and sufficient conditions for an exact penalty representation in the framework of indicator augmented Lagrangian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号