首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The efficiency of the collision-induced dissociation (CID) process as a function of the internal energy deposited into the ion during the ionization event was evaluated. (M + H)+ ions of pyrrole, pyrrolidine, pyridine and piperidine (five and six-membered ring heterocyclics) were generated by chemical ionization (CI). The internal energy of the ions was varied by using different reagent gases. Both high-energy (keV) and low-energy (eV) CID were performed on these ions. The experiments showed that the (M + H)+ ions of the five-membered ring compounds, pyrrole and pyrrolidine, have higher fragmentation efficiencies than the six-membered ring compounds, pyridine and piperidine. Fragmentation efficiencies in high-energy CID clearly correlate with the internal energy deposited by the ionization technique. Experiments showed that the low-energy CID process is more sensitive than high-energy CID to changes in internal energy.  相似文献   

4.
The fragmentation of six plumeran indole alkaloids (PIAs) previously isolated from Aspidosperma spruceanum has been investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) in the positive ion mode. The fragmentation pathways have been established on the basis of MS/MS experiments using fragment ions generated in‐source and deuterium‐labeled alkaloids as precursor ions and on the basis of accurate mass measurements. Our results demonstrated that the fragmentation routes observed for the protonated PIAs are essentially derived from a pericyclic reaction and from the opening of rings D and E, followed by 1,4‐hydrogen rearrangements. Product ions resulting from radical eliminations were also observed, contrary to the ‘even‐electron rule’. Our data reveals that some product ions from protonated PIAs provide crucial information for the characterization of the acyl substituent at N‐1, the methoxyl and hydroxyl groups at the aromatic moiety, and give evidence of an ether bridge between C‐18 and C‐21. The data reported here were used for the dereplication of these compounds in a stem bark methanolic extract of Aspidosperma spruceanum. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.  相似文献   

6.
Electrospray mass spectrometry and tandem mass spectrometry techniques were utilized to elucidate the structures of ten aporphine-benzylisoquinoline alkaloids, consisting of monoether link between aporphine and benzyltetrahydroisoquinoline units, which were isolated and identified previously from a variety of Thalictrum sp. (Ranunculaceae family) based mainly on the UV, IR, CD, NMR, EI-MS, CI-MS, derivatization, and chemical degradation techniques. In this investigation, protonated molecules, [M+H]+ ions, for nine tertiary alkaloids, a molecular ion, [M+'] ion, for a quaternary alkaloid, and very intense doubly- protonated molecules, [M+2H]2+ ions (100% of relative abundance) in Q1 Scan MS spectra, and prominent as well as diagnostic product ions for structural information in the tandem MS/MS spectra were observed for all investigated alkaloids each in nanogram quantities. More than 10 microg quantities of each investigated alkaloid or other isoquinoline and aporphine analogs needed for the CI-MS, EI-MS and FAB-MS analysis from the previous studies.  相似文献   

7.
Negative-ion desorption chemical ionization (DCI) tandem mass spectrometry was applied to the analysis of nanomole quantities of semisynthetic polyisoprenyl phosphates, the chain length of which ranged from 7 to 20 isoprene units. The DCI spectrum of all the compounds tested show the presence of independently generated ions [M-HPO3-H]?, [M-H3PO2-H]? and [M-H3PO4-H]? resulting from the loss of a part of or the entire phosphate group of a polyisoprenyl-P. In tandem mass spectrometry, the [M-H3PO4-H]? fragment produces series of ions 68 mass units apart, indicative of the polyisoprenoid nature of a compound. Studies with deuterated and α-saturated polyisoprenyl phosphates demonstrated that fragmentations of the [M-H3PO4-H]? ion proceed from both ends (α and ω) of a polyisoprenoid chain and may occur at either allylic (A) or vinylic (V) sites. Fragments of masses equal to [n×68 ? 1] and [n×68 ? 13] (where n is the number of isoprene units and 3≤n is less than the total number of isoprene residues within a polyisoprenoid chain) comprise the αA and ωV series, respectively, and represent the most abundant ions in tandem mass spectra of the [M-H3PO4-H]? fragment of polyprenyl phosphates, α-Saturated dolichyl phosphates can be distinguished easily from corresponding polyprenyl phosphates not only on the basis of a 2-u shift of the [M-H3PO4-H]? ion and the α series of fragments, but also because of the presence of an additional (A+14) series of ions 14 u heavier than fragments resulting from the allylic cleavages of an α-saturated polyisoprenoid chain. Possible mechanisms of the collision-induced dissociation reactions of polyprenyl phosphates are discussed.  相似文献   

8.
Tall fescue toxicosis and other maladies in livestock result from the ingestion of vasoconstrictive ergot alkaloids produced by fungal endophytes associated symbiotically with the grass. In order to facilitate future analyses of grass extracts considered responsible for outbreak of related livestock diseases, we examined the electrospray ionization mass spectra of specific ergot alkaloids under conditions that permit protonation. Our purposes were both to record the spectra with interpretation of mechanisms of fragmentation and to derive commonalities that would allow the prediction of mass spectra of related compounds for which standards were not readily available. With [M + H](+) values in parentheses, water-insoluble lysergic acid peptide ergot derivatives ergovaline (m/z 534), ergotamine (m/z 582), ergocornine (m/z 562), ergocryptine (m/z 576) and ergocrystine (m/z 610) exhibited a consistent loss of water (-18 u) from the C-12' alpha-hydroxy functionality. Of this group, ergovaline and ergotamine generated an m/z 320 fragment deriving from cleavage of ring E amide and ether functions with retention of the peptide ring system methyl group. Ergocornine, ergocryptine and ergocrystine similarly formed an m/z 348 fragment with retention of isopropyl. These assignments were supported by the lack of similar fragments from the water-soluble ergot ergonovine, which lacks a peptide ring system. Clavine-type ergot alkaloids lysergic acid and lysergol lack any substituents beyond simple ones directly on the C-8 position and, similarly to ergonovine, lack significant fragments at m/z 268, 251 and 225 shared by the peptide ergot alkaloids.  相似文献   

9.
Alkaline metal adduct ions of sphingomyelin were formed by electrospray ionization in positive ion mode. Under low energy collisionally activated dissociation (CAD), the product ion spectra yield abundant fragment ions representative of both long chain base and fatty acid which permit unequivocal determination of the structure. Tandem spectra obtained by constant neutral loss scanning permit identification of sphingomyelin class and specific long chain base subclass in the mixture. The fragmentation pathways under CAD were proposed, and were further confirmed by source CAD tandem mass spectrometry. The total analysis of sphingomyelin mixtures from bovine brain, bovine erythrocytes, and chicken egg yolk is also presented.  相似文献   

10.
The ammonia/desorption chemical ionization (DCI) mass spectra of nine cyclopentane iridoid glucosides were measured. The dependences cf the intensities of different peaks on the structures and stereochemistries of the compounds investigated is discussed.  相似文献   

11.
Mass-selected reagent ion chemical ionization (CI) performed in an ion trap instrument is an efficient tool to investigate gas-phase ion reactivities and therefore to find out new and/or optimized applications for structural analysis. For instance, it was shown that the C3H6O+ . (58 mass units) molecular ion originated from vinyl methyl ether (VME) should necessarily be used alone (i.e. unit-mass selected) to produce significant diagnostic-ions for double bond location in aliphatic alkenes. Regarding the assignment of epoxides, the previous NO+/CI method was adapted for an optimal use in the trap through isolation of NO+ cation from N2O (instead of NO) plasma and production of the acylium diagnostic-ions via CID of [M − H]+ formed by NO+-induced hydride abstraction. New alkylation ion-products, e.g. RCH = O+-al , were also found to characterize isomeric epoxides as a result of either an initial electrophilic addition of the C2H5+ cation (with saturated epoxides) or a methyl-transfer from [VME]+ . (with α,β-unsaturated epoxides). The multiple tandem mass spectrometry (MSn) capabilities of the ion trap were essential to achieve reagent ion mass-selection, structural assignment of the diagnostic-ions, or to provide further selectivity. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Chemical ionization mass spectrometry (MS) and tandem mass spectrometry (MS/MS) experiments have been performed for the structural characterization and isomeric differentiation of two series of C- and O-linked arylglycosides with potential antioxidant activity. Different amines have been used for producing gas phase chemical ionization. Depending on their proton affinity and steric hindrance, adduct ions with different stability are formed. The most stable adducts are produced by ethylamine and they have been extensively structurally characterized by experimental and theoretical approaches. Energy resolved chemical ionization tandem mass spectrometric experiments have allowed unambiguous characterization and differentiation of both the anomers differing at the configuration of the glycosidic C(1) atom, and regio- and structural isomers at extremely low concentrations, typical of mass spectrometry. This study has shown that amine chemical ionization mass spectrometry and MS/MS are powerful and versatile tools for the structural characterization of arylglycosides.  相似文献   

13.
Fructus Evodiae (Wuzhuyu), the fruits of Evodia rutaecarpa and related varieties, is widely used in traditional Chinese medicine. The bioactive constituents include the indoloquinazoline alkaloids rutaecarpine, evodiamine and dehydroevodiamine. A new assay based on high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/UV/APCI-MS/MS) was developed for the measurement of the indoloquinazoline alkaloids in commercial Fructus Evodiae products. Initially, the MS/MS fragmentation pathways of indoloquinazoline alkaloids were investigated to identify fragment ions that might be useful for the sensitive and selective detection of trace indoloquinazoline alkaloids during LC/MS/MS. Then, quantitative MS analysis of five indoloquinazoline alkaloids in 12 commercial Fructus Evodiae products from different geographical sources was performed. Analyte recovery was in the range of 97.5-105.3% for all with relative standard deviations (RSDs) below 6%, the intra-assay and inter-assay RSDs were less than 7%, and good linear relationships were shown with correlation coefficients for the analytes exceeding 0.999. Therefore, this LC/MS/MS assay facilitated the rapid quantitative analysis of rutaecarpine, evodiamine, evodiamide, 14-formyldihydrorutaecarpine and dehydroevodiamine in 12 commercial Fructus Evodiae products with excellent recovery, repeatability, accuracy and sensitivity. This method is simple and specific and can be used for identification and quality control of this traditional Chinese remedy.  相似文献   

14.
Simple, convenient, sensitive and accurate analytical methods are needed for the structural characterization and identification of alkaloid components in Rhizoma Coptidis in traditional Chinese herbal medicine, which has important bioactivity. In this work, the identification of alkaloid compounds in Rhizoma Coptidis was investigated by obtaining molecular mass information using electrospray ionization mass spectrometry (ESI-MS). Multi-stage tandem mass spectrometric (ESI-MS(n)) data for the alkaloid compounds were used for detailed structural characterization, then structure information was obtained by comparison of the fragmentation mechanisms of both alkaloids in Rhizoma Coptidis and standard samples of berberine, palmatine, coptisine and jatrorrhizine by MS. Based on the results obtained, the structure of a novel compound was elucidated. The results of the experiments demonstrate that ESI-MS(n) is a sensitive, selective and effective tool for the rapid determination of alkaloids in Rhizoma Coptidis.  相似文献   

15.
The behaviour of 5-methyl-2'-deoxycytidine (m(5)dCyd, claimed to be a potential marker for leukaemia) during the electrospray process was studied. In particular, considerations concerning the effect of solution chemistry (e.g. analyte concentration, pH, etc.) on electrospray ionization mass spectra were drawn. Furthermore, a procedure using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) for the determination of urinary m(5)dCyd is described. The method is simple, sensitive and highly specific. The pre-treatment procedure gave an average recovery of 79% (relative standard deviation (RSD) of 3%). Method performance was evaluated on spiked urine samples covering the concentration range from 50 ng/mL to 10 microgram/mL, the same as that of an existing inhibition ELISA method. Contrary to findings based on this immunoassay technique, urinary m(5)dCyd in healthy individuals was not detectable and did not increase in the presence of the malignant disease.  相似文献   

16.
17.
The reaction mixture for the hydrogenation of ethyl pyruvate on Pt-alumina catalyst modified with isocinchona alkaloids (alpha-ICN (I) and beta-ICN (II)) was studied by electrospray ionization tandem mass spectrometry (ESI-MS/MS). It was established that part of the chiral modifiers themselves are converted into ions of m/z 299, 305 and 309 in the course of chiral hydrogenation. The experimental data allowed the determination of the probable structure of the ions mentioned. According to ESI-MS/MS spectra the structure of the new cinchona alkaloids was assumed: tetrahydro-isocinchonines (III-VI), decahydro-isocinchonines (VII, VIII) and hydrogenated compounds of VII and VIII by scission of their C--N and C--O bonds (IX/1, IX/2, X). Fragmentation pathways are proposed for these new compounds.  相似文献   

18.
The mass spectrometric fragmentation behaviour of pyridazine and four monosubstituted derivatives containing a pbenylalkyl side-chain (3- and 4-benizylpyridazine, 3- and 4-(2-pbenylethyl)pyridazine) was investigated. In the electron impact ionization mess spectra of the 3-substituted compounds abundant [M – H]+ peaks are observed. This allows a clear distinction between 3- and 4-substituted pyridazines, as the spectra of the latter isomers show only very weak [M – H]+ signals. The stability of [M – H]+ ions derived from 3-alkylpyridazines (deduced from only the very low abundance of further fragment ions) gives strong evidence for a cyclic structure of these ions. One fragmentation pathway typical of the parent pyridazine, the [M - N2] fragmentation, was not detectable with any of the phenylalkylpyridazines investigated. Instead, loss of HCN, H3CN+ and N2H+ was observed. An interesting fragmentation, observed with 3-(2-phenylethyl)pyridazine, is the loss of +CH3 from the molecular ion and also from the [M – H]+ ion.  相似文献   

19.
Phytochelatins (PCs, also known as class III metallothioneins), a family of sulfhydryl-rich peptides with the formula (gamma-GluCys)(n)Gly(Pc(n), n = 2-11), are induced in plants, yeast and fungi exposed to heavy metals, and are thought to detoxify metals by forming PC- metal complexes. Although PCs have been detected, PC- metal complexes have not been well characterized. In this work, nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) and capillary liquid chromatography/electrospray ionization tandem mass spectrometry (capillary LC/ESI-MS/MS) methods were used to analyze PC - Cd complexes isolated from Datura innoxia, also known as Jimsonweed, cell culture exposed to Cd. With nano-ESI-MS/MS and capillary LC/ESI-MS/MS we could simultaneously detect the presence of PCs and PC - Cd complexes from plant cell extracts, unambiguously identify these species and elucidate the nature of individual PC - Cd complexes. Phytochelatins with n = 3-6 were detected, as were PC - Cd complexes with PC(3), PC(4) and PC(5). This is the first study to report the size and nature of native PC - Cd complexes from plant tissue samples. These results demonstrate that the direct analysis of plant extracts using nano-ESI-MS/MS and capillary LC/ESI-MS/MS methods is simple and sensitive to the range of PCs and PC - Cd complexes in plants. Hence these methods open up new opportunities for further quantitative analysis of PCs and PC - metal complexes in cell culture and plant systems to understand the relationship between the biosynthesis of these compounds and metal tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号