首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 727 毫秒
1.
Summary Utilizing experimentally determined capacity ratios and “a priori” calculated activity coefficients of the solutes the selectivity of separation in a liquid-solid chromatographic system is studied. Both the experimentally determined selectivity factor (α) and the calculated selectivity factor in the mobile phase (α m) of a solute pair fit a quadratic function of the concentration of eluting solvent components. Comparing these factors it is shown that the selectivity in the stationary phase (α s) is fairly constant when the composition of the mobile phase is changed.  相似文献   

2.
Linear solvation energy relationships (LSERs) were used to delineate which specific intermolecular interactions are responsible for changes in retention for a variety of well characterized analytes when acidic and basic additives were used in reversed phase HPLC. The effects of trifluoroacetic acid, triethylamine and a combination of trifluoroacetic acid and triethylamine on the LSERs were compared to those observed in the absence of additives. These effects were examined using four different mobile phase modifiers and five different stationary phases. Trifluoroacetic acid alone and in combination with triethylamine produced LSER regression coefficients nearly identical to those obtained with no additive present in the mobile phase. Triethylamine alone produced different LSER regression coefficients from the other systems unless the mobile phase contained trifluoroethanol as the mobile phase modifier, or the stationary phase consisted of a polymeric support.  相似文献   

3.
P. L. Zhu 《Chromatographia》1986,21(4):229-233
Summary An equation is derived which can describe how the retention of solutes is influenced by the composition of the mobile phase in reversed-phase liquid chromatography, the retention of solutes in alkyl bonded stationary phase regarded as the complexation between solute molecule and the active sites on the surface of the stationary phase. When the stationary phase is not fully saturated by the organic modifier, the activity of the active sites, the activity coefficient of the adsorbed solute as well as the activity coefficient of the solute in the mobile phase depend on the composition of the mobile phase. However, when the stationary phase is fully saturated, the composition of the mobile phase mainly influences the activity coefficient of the solute in the mobile phase. In addition, the selectivity of retention is discussed in terms of the derived equation.  相似文献   

4.
Summary The dissociation constants of several quinolones in a 7% acetonitrile-water mixture are determined. A model describing the effect of pH on the retention of quinolones by an octadecylsilica stationary phase with a 7% acetonitrile-water mobile phase is proposed. The model uses pH values in the mobile phase instead of pH values in water and takes into account the effect of activity coefficients. Fluorescence of quinolones in the mobile phase is studied, and a chromatographic separation with fluorimetric detection is established. Detection limits for the proposed method range from 3 to 12 μg·L−1.  相似文献   

5.
Countercurrent chromatography (CCC) is a liquid chromatography technique in which the stationary phase is also a liquid. The main chemical process involved in solute separation is partitioning between the two immiscible liquid phases: the mobile phase and the support-free liquid stationary phase. The octanol-water partition coefficients (P(o/w)) is the accepted parameter measuring the hydrophobicity of molecules. It is considered to estimate active principle partitioning over a biomembrane. It was related to the substance biological activity. CCC is able to work with an octanol stationary phase and an aqueous mobile phase. In this configuration, CCC is a useful and easy alternative to measure directly the P(o/w) of the molecules compared to other methods including the classical and tedious shake-flask method. Three ketones are used as model compounds to illustrate the CCC protocol of P(o/w) measurement. The focus of this work is put on ionisable molecules whose apparent P(o/w) is completely changed by ionization. β-Blockers, diuretics and sulfonamides are compound classes that were studied. Some of the experimentally determined P(o/w) coefficients of the molecular forms disagreed with calculated and experimental values available in the literature. The P(o/w) coefficients of the ionic forms and the acidity constants were also calculated using a theoretical model. Relationships between biological properties and hydrophobicity are also discussed.  相似文献   

6.
Polar columns used in the HILIC (Hydrophilic Interaction Liquid Chromatography) systems take up water from the mixed aqueous–organic mobile phases in excess of the water concentration in the bulk mobile phase. The adsorbed water forms a diffuse layer, which becomes a part of the HILIC stationary phase and plays dominant role in the retention of polar compounds. It is difficult to fix the exact boundary between the diffuse stationary and the bulk mobile phase, hence determining the column hold-up volume is subject to errors. Adopting a convention that presumes that the volume of the adsorbed water can be understood as the column stationary phase volume enables unambiguous determination of the volumes of the stationary and of the mobile phases in the column, which is necessary for obtaining thermodynamically correct chromatographic data in HILIC systems. The volume of the aqueous stationary phase, Vex, can be determined experimentally by frontal analysis combined with Karl Fischer titration method, yielding isotherms of water adsorbed on polar columns, which allow direct prediction of the effects of the composition of aqueous–organic mobile phase on the retention in HILIC systems, and more accurate determination of phase volumes in columns and consistent retention data for any mobile phase composition. The n phase volume ratios of 18 columns calculated according to the new phase convention strongly depend on the type of the polar column. Zwitterionic and TSK gel amide and amine columns show especially strong water adsorption.  相似文献   

7.
Evaluation of lipophilicity parameters for basic compounds using different chromatographic stationary phases is presented. An HPLC method for determination of lipophilic molecule-stationary phase interactions was based on gradient analysis. Differences in correlation between the lipophilicity of compounds and experimental chromatographic results obtained in pseudo-membrane systems showed a strong influence of stationary phase structure and physico-chemical properties. beta-Blocker drugs with varying lipophilicity and bio-activity were chosen as test compounds. The stationary phases used for the study were monolithic rod-structure C18 and silica gel octadecyl phase SG-C18 as reference material. The second group was silica gel-based polar-embedded alkylamide and cholesterolic phases. The mobile phase was composed of acetonitrile or methanol with ammonium acetate, and a linear gradient of methanol and acetonitrile in mobile phase was performed. A linear correlation of plots of log k(g) = f(log P) was observed, especially for polar-embedded phases, and this allowed log P(HPLC) to be calculated. The behavior of stationary phases in methanol and acetonitrile buffer showed differences between obtained log P(HPLC) values.  相似文献   

8.
Abstract

Utilizing retention data estimated by HPTLC on silica and activity coefficients in the non-aqueous mobile phase determined on the basis of saturation solubility of solutes, the effect of the mobile phase on retention of a set of structurally different solutes was studied. A quadratic relationship between the logarithm of retention factors or activity coefficients and the volume fraction of ethyl acetate in heptane - ethyl acetate solution was observed, suggesting a common retention machanism in liquid chromatography. The retention and/or relative retention of a solute was affected by both the mobile and the stationary phase. The magnitude of these effects depended merely on the molecular structure of a solute.  相似文献   

9.
A retention model for micellar liquid chromatography was tested based on the data of separation of three benzodiazepins and six β-blockers. The model was obtained by analyzing changes in the microenvironment of a sorbate in transferring from the mobile to stationary phase. It can be used to describe the retention of benzodiazepins, which are neutral under the separation conditions, and the positively charged β-blockers. The calculated model coefficients are indicative of an increase in the number of 1-pentanol molecules and sodium dodecyl sulfate monomers in the microenvironment of the sorbates in transferring from the mobile to stationary phase. The solvation of the positive β-blockers by anionic surfactant monomers was higher than that of neutral benzodiazepins.  相似文献   

10.
新型高效液相色谱酰胺键合固定相的制备与评价   总被引:1,自引:0,他引:1  
将YWG-80硅胶和3-氨基丙基三甲氧基硅烷反应后与2-壬基丁二酰氯反应制得一种新型双齿酰胺键合固定相(BABSP-2)。采用元素分析和傅里叶变换红外光谱表征了键合相;用芳香族化合物溶质和甲醇-水二元流动相,考察了键合相的疏水选择性和亲硅醇基活性;评估了在酸性条件下(pH2.5)的水解稳定性。结果表明:BABSP-2能有效抑制残留硅醇基活性,并具有可比的疏水选择性和较好的水解稳定性。  相似文献   

11.
张养军  申烨华  张启东  耿信笃 《色谱》2000,18(6):487-490
 提出了以醋酸 水作为流动相的体系中 ,在ODS柱上分离生物大分子的反相高效液相色谱 (RPLC)方法。实验结果表明 ,醋酸 水的洗脱能力强于甲醇 水 三氟醋酸体系 ,在一定程度上克服了色谱分离中一些蛋白质的不可逆吸附且具有便于冷冻干燥的优点。用参数Z(1mol溶剂化溶质被溶剂化固定相吸附时从两者接触表面释放出置换剂的摩尔总数 ) ,logI(与 1mol溶质对固定相亲和势有关的常数 )和 j(与 1mol溶剂对固定相亲和势有关的常数 )对 9种蛋白质在此流动相体系中的保留进行了表征。  相似文献   

12.
 涂敷直链淀粉 三 (3,5 二甲基苯基氨基甲酸酯 )于自制的球形氨丙基硅胶上 ,制备了手性固定相。用该固定相直接拆分了一系列外消旋联苯类保肝药物 ,考察了一系列伯醇 (乙醇、正丙醇、正丁醇 )和异丙醇等流动相改性剂对保留和立体选择性的影响 ,讨论了固定相对样品的作用机理。  相似文献   

13.
Résumé On étudie l'influence de la solubilité mutuelle de la phase fixe et de la phase mobile dans la détemination des coefficients d'activité par chromatographie liquide-liquide. On propose et vérifie une équation qui pemet d'exprimer la rétention des solutés en chromatographie liquide-liquide en fonction des coefficients d'activité dans le cas où le squalane est utilisé comme phase fixe et l'aniline et l'acétonitrile comme phases mobiles.
Determination of activity coefficients by liquid-liquid chromatography: Influence of the mutual solubility of the solvents
Summary The influence of the mutual solubility of the stationary and the mobile phases in connection with the determination of activity coefficients by liquid-liquid chromatography is considered. An equation is proposed and verified for the retention of solutes in liquid-liquid chromatography using squalane as the stationary phase and acetonitrile or aniline as the mobile phase.


Ce travail a bénéficié d'un financement du Conseil National de la Recherche, C.N.R. (Centro di Studi di Chimica Analitica Strumentale, C.N.R. Bari)  相似文献   

14.
Infinite-dilution gas–liquid chromatographic activity coefficients at 393.15 K (with their thermal and athermal components) and derived excess partial molar Gibbs energies, enthalpies, and entropies have been determined for each of 33 solutes of different polarity on four stationary phases with cyano groups, using retention data taken from the literature. The strongest interactions predicted by the solvation model are the dipolarity/polarizability, the acidic solute–basic stationary phase interaction, and nonpolar cavity formation and dispersion. These interactions were compared with those evaluated from the solute activity coefficients; the effect of the solute connectivity index and dipole moment on nonpolar and polar interactions, respectively, is discussed. The dependence of the thermal activity coefficient on nonpolar interactions, and the influence of stationary phase polarity on the four solute–stationary phase interactions, were evaluated. The nonpolar interaction increases with increasing connectivity and with increasing athermal activity coefficient. The dipolarity/polarizability interaction increases with increasing solute dipole moment. Finally, polar interactions increase with increasing stationary phase polarity whereas the nonpolar interaction is independent of stationary phase polarity.  相似文献   

15.
The main feature of counter-current chromatography (CCC) is that the stationary phase is a liquid as well as the mobile phase. The retention volumes of solutes are directly proportional to their distribution coefficients K(D) in the biphasic liquid system used in the CCC column. Solutes with high K(D) coefficients are highly retained in the column. The back-extrusion method (BECCC) uses the fact that the liquid stationary phase, that contains the retained solutes, can be easily moved. Switching the column inlet and outlet ports without changing the liquid phase used as the mobile phase causes the rapid collapse of the two immiscible liquid phases inside the column, the previously stationary phase being gathered at the new column outlet. Then this previously stationary liquid phase is extruded outside the CCC column carrying the retained solutes. The back-extrusion method is tested with a standard mixture of five compounds and compared with the recently described elution-extrusion method. It is shown that the chromatographic resolution obtained during the back-extrusion step is good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. However, a major drawback of the BECCC method is that all solutes are split between the liquid phases according to their distribution ratios when the CCC column equilibrium is broken. The change of flowing direction should be done after a sufficient amount of mobile phase has flushed the column in the classical mode, eluting solutes with small and medium distribution ratios. Otherwise, a significant portion of the solutes will stay in the mobile phase inside the column and produce a broad peak showing after the stationary phase extrusion.  相似文献   

16.
万古霉素作为一种大环抗生素,具有复杂的分子结构。在充分考虑万古霉素分子结构特征的情况下,采用戊二醛间隔臂法制备了万古霉素键合固定相,在反相、亲水、离子交换等分离模式下研究了其色谱分离性能。结果表明,当流动相中有机调节剂含量较低时,该色谱柱表现出典型的反相色谱分离模式特征;随着有机调节剂含量的增加,逐渐转变成亲水模式,分离特性发生明显改变。由于万古霉素分子结构中含有可以解离的氨基,因此该固定相也能够用于阴离子交换模式下的分析方法的发展。分别在反相、亲水和阴离子交换模式下,将其应用于扑尔敏等多种非对映体药物和新型甜味剂甜菊糖的高效液相色谱分离;仅通过改变分离条件,即可在3种不同分离模式下完成分离。这些结果可以为新型色谱固定相的设计,以及发展采用特殊结构改性基团的色谱固定相在相应分离模式下的分析方法提供指导。  相似文献   

17.
The prediction capability of the solvation parameter model in reverse‐phase liquid chromatography at different methanol‐water mobile phase compositions and temperatures was investigated. By using a carefully selected set of solutes, the training set, linear relationships were established through regression equations between the logarithm of the solute retention factor, logk, and different solute parameters. The coefficients obtained in the regressions were used to create a general retention model able to predict retention in an octadecylsilica stationary phase at any temperature and methanol‐water composition. The validity of the model was evaluated by using a different set (the test set) of 30 solutes of very diverse chemical nature. Predictions of logk values were obtained at two different combinations of temperature and mobile phase composition by using two different procedures: (i) by calculating the coefficients through a mathematical linear relationship in which the mobile phase composition and temperature are involved; (ii) by using a general equation, obtained by considering the previous results, in which only the experimental values of temperature and mobile phase composition are required. Predicted logk values were critically compared with the experimental values. Excellent results were obtained considering the diversity of the test set.  相似文献   

18.
Summary The chromatographic properties of an alkylphosphonate-modified magnesia-zirconia composite stationary phase have been investigated by reversed-phase high-performance liquid chromatography with basic compounds as probes. The influence of organic modifier composition and mobile phase pH was studied. The new stationary phase, similar to a silica-based reversed-phase stationary phase, has hydrophobic properties, but greater pH stability. Use of the phase results in more symmetric peaks for basic compounds. A possible mechanism of retention of basic solutes on the new stationary phase is discussed. The chromatographic behavior of the basic solutes depends mainly on hydrophobic interactions between the solutes and the hydrophobic moiety of the stationary phase. Br?nsted acidic and basic sites on the surface of the new stationary phase play an important role in the retention of ionized solutes by ion-exchange interaction. Promising separations of some basic compounds have been achieved by use of methanolic TRIS buffer, pH 10.0, as the mobile phase.  相似文献   

19.
Li Y  Li J  Chen T  Liu X  Zhang H 《Journal of chromatography. A》2011,1218(11):1503-1508
The mixed sulfated/methacryloyl polysaccharide derivative was prepared and successfully immobilized onto the surface of porous silica particles by polymerization. Polysaccharide derivative was calculated as 10.33% in the stationary phase prepared. The new stationary phase (PMSP) showed both hydrophilic interaction (HILIC) and per aqueous liquid chromatography (PALC) characteristics. The effects of column temperature, the water content, pH and ion strength of mobile phase on the retention time of test compounds in highly aqueous eluents were investigated to evaluate the PALC features of PMSP. The column efficiency is about 31,000 plates/m for benzoic acid in water/ACN (97/3, v/v) mobile phase at a flow rate of 1.0 mL/min. Compared with C18 column, the PMSP had shorter retention time for weak polar and non-polar compounds, but also showed stronger retention for strong polar compounds. It indicated that PALC was a suitable mode of chromatography as replacement of HILIC and complementarity of reversed-phase liquid chromatography (RPLC).  相似文献   

20.
K. Jinno 《Chromatographia》1982,15(11):723-725
Summary Utilization of micro-HPLC is described for the direct measurement of the partition coefficients needed in studying the quantitative structure — activity relationships (QSAR). The method involves analyzing the solutes in acetonitrile — water as the mobile phase on commercially available reversed-phase stationary phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号