首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The reaction of [Li(THF)(4)][1,8-mu-(Mes(2)B)C(10)H(6)] with HgCl(2) affords [1,1'-(Hg)-[8-(Mes(2)B)C(10)H(6)](2)] () or [1-(ClHg)-8-(Mes(2)B)C(10)H(6)] (), depending on the stoichiometry of the reagents. These two new compounds have been characterized by (1)H, (13)C, (11)B and (199)Hg NMR, elemental analysis and X-ray crystallography. The cyclic voltammogram of in THF shows two distinct waves observed at E(1/2) -2.31 V and -2.61 V, corresponding to the sequential reductions of the two boron centers. Fluoride titration experiments monitored by electrochemistry suggest that binds tightly to one fluoride anion and more loosely to a second one. Theses conclusions have been confirmed by a UV-vis titration experiment which indicates that the first fluoride binding constant (K(1)) is greater than 10(8) M(-1) while the second (K(2)) equals 5.2 (+/- 0.4) x 10(3) M(-1). The fluoride binding properties of have been compared to those of [1-(Me(2)B)-8-(Mes(2)B)C(10)H(6)] () and [1-((2,6-Me(2)-4-Me(2)NC(6)H(2))Hg)-8-(Mes(2)B)C(10)H(6)] (). Both experimental and computational results indicate that its affinity for fluoride anions is comparable to that of but significantly lower than that of the diborane . In particular, the fluoride binding constants of , and in chloroform are respectively equal to 5.0 (+/- 0.2) x 10(5) M(-1), 1.0 (+/- 0.2) x 10(3) M(-1) and 1.7 (+/- 0.1) x 10(3) M(-1). Determination of the crystal structures of the fluoride adducts [S(NMe(2))(3)][-mu(2)-F] and [S(NMe(2))(3)][-mu(2)-F] along with computational results indicate that the higher fluoride binding constant of arises from a strong chelate effect involving two fluorophilic boron centers.  相似文献   

2.
The reaction of the [Li(THF)4]+ salt of dimesityl-1,8-naphthalenediylborate with [Me2NCH2]I affords a borane (1-(Mes2B)-8-(Me2NCH2)-C10H6) which can be converted into a cationic borane [3]+ ([1-(Mes2B)-8-(Me3NCH2)-C10H6]+) by methylation with MeOTf. This cationic borane promptly complexes fluoride to afford the corresponding zwitterionic ammonium/fluoroborate 3-F (1-(Mes2FB)-8-(Me3NCH2)-C10H6). Cation [3]+ fails to react with chloride, bromide, and iodide indicating that fluoride complexation is selective. Structural, spectroscopic, and computational studies carried out on 3-F show the existence of an unusual C-H...F-B hydrogen bond. Remarkably, [3]+ captures fluoride from water under biphasic conditions (H2O/CHCl3) to form 3-F. The high fluoride affinity of [3]+ can be correlated to the Coulombic forces which stabilize the B-F bond against heterolysis.  相似文献   

3.
The multidentate dicarbollide ligand nido-7,8-(NMe2CH2)2-7,8-C2B9H11 has been prepared, structurally characterized, and employed in the preparation of the novel mono- and trimetallic titanium complexes [eta5:eta1-(NMe2CH2)C2B9H9CH2NMe2]Ti(NMe2)2 and [eta5:eta1-[(NMe2CH2)C2B9H9CH2NMe2]Ti(NMe2)]2-mu3-O-Ti(NMe2)2.  相似文献   

4.
Lee MH  Gabbaï FP 《Inorganic chemistry》2007,46(20):8132-8138
As part of our efforts to increase the fluoride affinity of bidentate Lewis acids, we have set out to determine if the F(-) anion chelation occurring in such systems can be complemented by favorable Coulombic attractions. To explore this idea, the neutral B/Hg bidentate Lewis acid 1-{Mes(2)B}-8-{(2,6-Me(2)-4-Me(2)NC(6)H(2))Hg}C(10)H(6) (3) and its cationic analogue [1-{Mes(2)B}-8-{(2,6-Me2-4-Me(3)NC(6)H(2))Hg}C(10)H(6)]+ ([4]+) have been synthesized and studied. Compound 3 as well as the triflate salt of [4]+ react with [S(NMe(2))3][Me(3)SiF(2)] to afford the corresponding fluoride complexes [3-micro(2)-F]- and [4-micro(2)-F]. Spectroscopic and structural studies confirm that the F- anion bridges the two Lewis acidic centers in both [3-micro(2)-F]- and [4-micro(2)-F]. UV-vis titration experiments carried out in tetrahydrofuran/water (9/1, v/v) mixtures indicate that the fluoride binding constants of 3 and [4]+ are clearly differentiated and are equal to 1.3 (+/-0.1) x 10(2) M(-1) and 6.2 (+/-0.2) x 10(4) M(-1), respectively. The enhanced fluoride binding constant of [4]+, when compared to 3, confirms that the chelate effect occurring in these types of fluoride receptors can be combined with favorable Coulombic attractions to strengthen the host-guest interaction. Cation [4]+ remains highly selective for F- over other environmentally abundant anions including Cl-, Br-, NO(3)(-), H(2)PO(4)(-), and HSO(4)(-) and shows only a weak response to OAc(-). Finally, the addition of an aqueous solution of Al3+ to a solution containing [4-micro(2)-F] leads to complete regeneration of [4]+, showing that F(-) binding is reversible.  相似文献   

5.
[reaction: see text] To verify if hydrogen-bond donor groups can assist fluoride binding at the boron center of triaryl boranes, o-(dimesitylboryl)trifluoroacetanilide has been synthesized. Reaction of this new borane with [n-Bu(4)N][F] in acetone affords the corresponding fluoroborate complex whose stability constant exceeds that of [Mes(3)BF](-) by at least 2 orders of magnitude. Presumably, the higher fluoride affinity of o-(dimesitylboryl)trifluoroacetanilide results from the cooperativity of the Lewis acidic boron center and the hydrogen-bond donor trifluoroacetamide group.  相似文献   

6.
Treatment of 1,8-bis(diphenylhydroxymethyl)naphthalene with a mixture of [HBF(4)](aq) and (CF(3)CO)(2)O affords the corresponding dication, 1,8-bis(diphenylmethylium)naphthalenediyl (1(2+)), which was isolated as the [BF4]- salt. This dication has been fully characterized, and its structure has been studied computationally. The (13)C NMR resonance of the methylium centers appears at 207.7 ppm. As indicated by an X-ray single-crystal analysis, the vicinal methylium centers are separated by 3.112(4) A. Dication (1(2+)) reacts with fluoride to afford [1-F]+ which has been isolated as the [BF4]- salt. The fluorine atom of [1-F](+) is connected to one of the former methylium centers through a typical C-F bond of 1.424(2) A and forms a long interaction of 2.444(2) A with the other methylium center. While the structure of [1-F]+ can be largely accounted for by considering a simple methylium formulation, density functional calculations followed by an Atom In Molecules analysis as well as a calculation of the Boys localized orbitals indicate that the long C-F interaction of 2.444(2) A corresponds to a dative bond. Hence, formulation of [1-F]+ as an unsymmetrical fluoronium must also be considered. As indicated by 1H NMR spectroscopy, the structure of this ion is fluxional; the fluorine atom oscillates between the former methylium centers with apparent activation parameters of DeltaH++ = 52(+/-3) kJ mol(-1) and DeltaS++ = -18(+/-9) J K(-1) mol(-1) as derived from line shape analysis. This dynamic process, which has also been studied theoretically by B3LYP density functional theory and M?ller-Plesset second-order perturbation theory methods, involves symmetrical fluoronium ions as low-energy transition states.  相似文献   

7.
With the recognition of aqueous fluoride and cyanide ions as an objective, we have investigated the anion binding properties of two isomeric ammonium boranes, namely [p-(Mes2B)C6H4(NMe3)]+ ([1]+) and [o-(Mes2B)C6H4(NMe3)]+ ([2]+). These cationic boranes, which could be obtained by reaction of the known 4- and 2-dimesitylboryl-N,N-dimethylaniline with MeOTf, have been investigated both experimentally and computationally. They both react with fluoride and cyanide ions in organic solvents to afford the corresponding fluoroborate/ or cyanoborate/ammonium zwitterions 1F, 1CN, 2F, and 2CN. In aqueous solution, however, these cationic boranes behave as remarkably selective receptors. Indeed, [1]+ only complexes cyanide ions while [2]+ only complexes fluoride ions. In H2O/DMSO 60:40 vol (HEPES 6 mM, pH 7), the cyanide binding constant of [1]+ and the fluoride binding constant of [2]+ are respectively equal to 3.9 (+/-0.1) x 108 and 910 (+/-50) M-1. Structural and computational studies indicate that both steric and electronic effects contribute to the unusual selectivity displayed by these cationic boranes. Owing to favorable Coulombic effects, the para-derivative [1]+ has a very high affinity for cyanide; yet these effects are not sufficiently intense to allow complexation of the more efficiently hydrated and less basic fluoride anion. In the case of the ortho-derivative [2]+, the proximity of the ammonium moiety leads to an increase in the Lewis acidity of the boron center thus making fluoride binding possible. However, steric effects prevent cyanide coordination to the boron center of [2]+. Finally, cation [1]+ and [2]+ bind their dedicated anions reversibly and show a negligible response in the presence of other common anions including Cl-, Br-, I-, NO3-, OAc-, H2PO4-, and HSO4-.  相似文献   

8.
While we have previously reported that [1-(Mes2B)-8-(Me3NCH2)-C10H6]+ ([2]+) complexes fluoride ions to form [1-(Mes2FB)-8-(Me3NCH2)-C10H6] (2-F), we now show that this cationic borane also complexes cyanide to form [1-(Mes2(NC)B)-8-(Me3NCH2)-C10H6] (2-CN). This reaction also occurs under biphasic conditions (H2O-CHCl3) and may serve to transport cyanide in organic phases. The zwitterionic cyanoborate 2-CN has been fully characterized and its crystal structure determined. UV-vis titration experiments carried out in THF indicate that [2]+ has a higher affinity for fluoride (K > 10(8) M(-1)) than cyanide (K = 8.0 (+/-0.5) x 10(5) M(-1)). Steric effects which impede cyanide binding to the sterically congested boron center of [2]+ are most likely at the origin of this selectivity. Finally, electrochemical studies indicate that [2]+ is significantly more electrophilic than its neutral precursor 1-(Mes2B)-8-(Me2NCH2)-(C10H6) (1). These studies also show that reduction of [2]+ is irreversible, possibly because of elimination of the NMe3 moiety under reductive conditions. In fact, [2]OTf reacts with NaBH4 to afford 1-(Mes2B)-8-(CH3)-(C10H6) (4) which has also been fully characterized.  相似文献   

9.
Liu ZQ  Shi M  Li FY  Fang Q  Chen ZH  Yi T  Huang CH 《Organic letters》2005,7(24):5481-5484
[reaction: see text] Three organoboron compounds are shown to be two-photon fluorescent sensors for fluoride anion with high sensitivity and selectivity. The recognition mechanism is attributed to the unique steric structure of the bulky dimesitylboryl group and the Lewis acid-base interaction between trivalent boron atom and fluoride anion.  相似文献   

10.
Reaction of dimesityl-1,8-naphthalenediylborate (1) with C6F5HgCl results in the formation of a B/Hg heteronuclear bidentate Lewis acid (2), which complexes fluoride to afford [2-mu2-F]-. Structural and photophysical studies carried out in solution and in the solid state indicate that 2 is a highly selective and sensitive phosphorescent fluoride sensor. The proximity of the two Lewis acidic sites enforced by the 1,8-naphthalenediyl backbone promotes fluoride anion chelation and is, therefore, responsible for the high binding constant. The interplay of conjugative and spin-orbit coupling effects mediated by the boron and mercury atoms, respectively, results in the phosphorescent signaling of fluoride binding. Remarkably, fluoride binding occurs in partially aqueous solutions and results in a drastic change of the phosphorescence observed when the solutions are frozen.  相似文献   

11.
[structure: see text] A series of tetralactam macrocycles having different substituents were prepared, and their binding affinities for an adipamide guest were investigated in CDCl3 by 1H NMR titrations. The association constants strongly depend on the substituents, varying up to DeltaDeltaG = 3.4 kcal/mol; electron-donating substituents (OMe, NMe2) decrease the binding affinity, while electron-withdrawing groups (Cl, NO2) increase it. These large substituent effects have been rationalized by secondary repulsions and partial perturbations of intramolecular hydrogen bonds.  相似文献   

12.
Reaction of the diborane(4) B(2)(NMe(2))(2)I(2) with two equivalents of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Cr, Mo, W) yielded the dinuclear boryloxycarbyne complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO](2)B(2)(NMe(2))(2)] (4 a, M=Mo; b, M=W; c, M=Cr), which were fully characterised in solution by multinuclear NMR methods. The Mo and W complexes 4 a, b proved to be kinetically favoured products of this reaction and underwent quantitative rearrangement in solution to afford the complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO]B(NMe(2))B(NMe(2))[M(CO)(3)(eta(5)-C(5)H(5))]] (5 a, M=Mo; b, M=W); 5 a was characterised by X-ray crystallography in the solid state. Corresponding reactions of B(2)(NMe(2))(2)I(2) with only one equivalent of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Mo, W) initially afforded 1:1 mixtures of the boryloxycarbyne complexes 4 a, b and unconsumed B(2)(NMe(2))(2)I(2). This mixture, however, yielded finally the diborane(4)yl complexes [(eta(5)-C(5)H(5))(OC)(3)M[B(NMe(2))B(NMe(2))I]] (6 a, M=Mo; b, M=W) by [(eta(5)-C(5)H(5))(OC)(3)M] transfer and rearrangement. Density functional calculations were carried out for 4 c and 5 a, b.  相似文献   

13.
o-(Fluorosilyl)(dimesitylboryl)benzenes have been prepared as colorless crystals by reacting fluorodimesitylborane with o-(fluorodimethylsilyl)phenyllithium and o-(fluorodiphenylsilyl)phenyllithium. The o-(fluorosilyl)(dimesitylboryl)benzenes serve as B/Si bidentate Lewis acid and efficiently capture fluoride ion from potassium fluoride in the presence of [2.2.2]cryptand or 18-crown-6 in toluene, giving the corresponding mu-fluoro bridged products. The structures were characterized by X-ray crystal structure analysis and multinuclear NMR spectroscopy. Fluoride ion affinities of the o-(fluorosilyl)(dimesitylboryl)benzenes were evaluated in comparison with non-silylated triarylborane.  相似文献   

14.
The conformational preference of calix[4]pyrrole and its fluoride and chloride anion-binding properties have been investigated by density functional theory calculations. Geometries were optimized by the BLYP/3-21G and BLYP/6-31G methods, and energies were evaluated with the BLYP/6-31+G method. To model the effect of medium, the SCIPCM solvent model was also employed. Four typical conformations of the parent substituent-free calix[4]pyrrole were studied. Both in the gas phase and in CH(2)Cl(2) solution, the stability sequence is predicted to be 1,3-alternate > partial cone > 1,2-alternate > cone. The cone conformation is predicted to be about 16.0 and 11.4 kcal/mol less stable in the gas phase and CH(2)Cl(2) solution, respectively. This is mainly due to electrostatic repulsions arising from the all-syn pyrrole/pyrrole/pyrrole/pyrrole arrangement present in this conformer. The existence of possible 1:1 and 1:2 anion-binding modes were explored in the case of fluoride anion, and the factors favoring the 1:1 binding mode are discussed. The calculated binding energy for fluoride anion is about 15 kcal/mol larger than that for chloride anion. The calculated binding energy for chloride anion agrees with the experimental value very well. The presence of meso-alkyl substituents destabilizes the cone conformer with respect to the 1,3-alternate conformer and, therefore, reduces the anion-binding affinity by 3-4 kcal/mol. The strength of N-H- - -anion hydrogen bonds in the various structures subject to study were estimated on the basis of the calculated anion-binding energies and the predicted structural deformation energies of substituent-free calix[4]pyrrole.  相似文献   

15.
The ferracarborane [N(PPh3)2][6,6,6,10,10,10-(CO)6-closo-6,10,1-Fe2CB7H8] reacts in CH2Cl2 with 3 molar equivalents of Ag[PF6] to yield the trifluoro-substituted species [N(PPh3)2][7,8,9-F3-6,6,6,10,10,10-(CO)6-closo-6,10,1-Fe2CB7H5]. Compound undergoes structural rearrangement in toluene at reflux temperatures, forming [N(PPh3)2][8,9,10-F3-6,6,6,7,7,7-(CO)6-closo-6,7,1-Fe2CB7H5]. Alternatively, reaction of either or with a 10-fold excess of Ag[PF6] in CH2Cl2 forms two species: namely, [N(PPh3)2][2,7,9,10-F4-6,6,6,8,8,8-(CO)6-closo-6,8,1-Fe2CB7H4], in which one further B-F substitution has occurred and the {Fe2CB7} cluster core has rearranged, plus a mono-iron co-product, [N(PPh3)2][3,8,9-F3-7,7,7-(CO)3-closo-7,1-FeCB7H5] that is formed by polyhedral contraction. Treatment of with [NO][BF4] in CH2Cl2 results in CO substitution at the 4-connected iron vertex [Fe10], producing the zwitterionic complex [7,8,9-F3-6,6,6,10,10-(CO)5-10-NO-closo-6,10,1-Fe2CB7H5]. Addition of Me3NO to a mixture of and PEt3 in CH2Cl2 also results in CO substitution, forming the isomeric species [N(PPh3)2][7,8,9-F3-6,6,m,10,10-(CO)5-n-PEt3-closo-6,10,1-Fe2CB7H5] [m=6, n=10; m=10, n=6] in a 5:1 ratio. Treatment of with [NO][BF4] and then CNBut in CH2Cl2 allows further, successive CO substitution at Fe10 to yield first a neutral, zwitterionic complex [7,8,9-F3-6,6,6,10-(CO)4-10-NO-10-PEt3-closo-6,10,1-Fe2CB7H5] and then [7,8,9-F3-6,6,6-(CO)3-10-CNBut-10-NO-10-PEt3-closo-6,10,1-Fe2CB7H5]. The molecular structures of compounds and have been established by X-ray diffraction.  相似文献   

16.
The reactions of [Zr(NMe2)4]2 with triamido-triazacyclonane ligand precursors, {NH(Ph)SiMe2}3tacn (H3N3[9]N3) and {NH(C6H4F)SiMe2}3tacn (H3N3-F[9]N3), led to the formation of complexes [Zr(NMe2)2{N(Ph)SiMe2}2{NH(Ph) SiMe2}tacn], 1, and [Zr(NMe2)2{N(o-C6H4F)SiMe2}2{NH(o-C6H4F)SiMe2} tacn], 2, where the zirconium is coordinated to two remaining dimethylamido ligands and to a dianionic tacn-based ligand, [{N(Ph')SiMe2}2{NH(Ph')SiMe2}tacn]2-, that formed from deprotonation of two amine pendent arms of the ligands' precursors. The third pendent arm of H3N3[9]N3 and H3N3-F[9]N3 remains neutral and not bonded to the zirconium. Treatment of 1 with NaH led to the synthesis of [Zr(NMe2){N(Ph)SiMe2}2tacn], 3, that results from the cleavage of the N-Si bond of the original neutral pendent arm. Complexes [ZrCl{N(Ph')SiMe2}2tacn] (Ph' = C6H5, 4, and C6H4F, 5) have been obtained by reactions of ZrCl4 with {MN(Ph')SiMe2}3tacn.2THF (M = Li, Na). Reactions of 4 and 5 with LiC triple bond CPh led to the syntheses of [Zr(CCPh){N(Ph')SiMe2}2tacn] (Ph' = C6H5, 6, and C6H4F, 7). The solid-state structure of 3 shows a chiral metal center.  相似文献   

17.
This article describes BP86/SV(P) (DFT) calculations on a representative set of weakly coordinating anions (WCAs) of type [M(L)n]-, their parent neutral Lewis acids M(L)(n-1) and their ate complexes with fluoride, that is, [FM(L)(n)](n-1) (M=B, L=F, OTeF5, C6H5, C6F5, C6H3(CF3)2, CF3; M=P, As, Sb, L=F, OTeF5; M=Al, L=OC(CF3)3). Compounds with fluoride bridges, that is, Sb(n)F(5n) and [Sb(n)F(5n+1)]- (n=2, 3, 4), Al2(L)5F and [(L)3Al-F-Al(L)3]- (L=OC(CF3)3), (F4C6[1,2-B(L)2]2, [F4C6[1,2-B(L)2]2F]-, [F4C6[1,2-B(L)2]2OMe]- (L=C6F5) were also calculated. Based on these BP86/SV(P) and auxiliary MP2/TZVPP, G2, and CBS-Q calculations the relative stabilities and coordinating abilities of these WCAs were established with regard to the fluoride ion affinities (FIA) of the parent Lewis acids, the ligand affinity (LA) of the WCAs, the decomposition of a given WCA in the presence of a hard (H+, proton decomposition PD) and a soft electrophile (Cu+, copper decomposition CuD), the position of the HOMO, the HOMO-LUMO gap, and population analyses of the anions providing partial charges for all atoms. To obtain data that is more reliable, the assessed quantities were calculated through isodesmic reactions. If parts of the calculations could not be done isodesmically, higher levels such as MP2/TZVPP, G2, and CBS-Q were used to obtain reliable values for these reactions. Although the obtained results can not be taken as absolute, the relative ordering of the stabilities of all WCAs will undoubtedly be correct, since a single methodology was chosen for the investigation. To include media effects the decomposition reactions of a subset of 14 WCAs with the SiMe3+ and [Cp2ZrMe]+ ions were also calculated in PhCl and 1,2-F2C6H4 (COSMO solvation model). We found that in most cases gas-phase calculations and solution calculations give comparable results for the stability of the anion. Applications of the LA and FIA that allow one to decide, on thermodynamic grounds, which WCA or Lewis acid is the most suitable for a given problem are sketched.  相似文献   

18.
[RuCl2(PPh3)3] reacts with thallium(I) fluoride to give either [Tl(mu-F)3Ru(PPh3)3] (1) or [Tl(mu3-F)(mu2-Cl)2Ru2(mu2-Cl)(mu2-F)(PPh3)4] (2) depending on the excess of TlF used. Both 1 and 2 were fully characterized, including X-ray structure determinations. Complex 1 reacts with dihydrogen to form the known ruthenium hydride complex [Ru(H)2(H2)(PPh3)3] upon hydrogenolysis of the Ru-F bond. The reaction of 1 with activated alkyl bromides (R-Br) gives the corresponding alkyl fluorides and the trinuclear complex [Tl(mu3-F)(mu2-F)(mu2-X)Ru2(mu2-Br)(mu2-F)(PPh3)4] (X=Br, F) (3), whose structure closely resembles that of 2. However, 1 is not active as catalyst for the nucleophilic fluorination of R-Br in the presence of thallium fluoride. The effect of the bridging coordination mode of fluoride on the Ru-F bond is discussed in terms of the HSAB principle, which suggests a more general model for predicting the stability of d6 and d8 complexes containing hard ligands (such as fluoro, oxo, and amido).  相似文献   

19.
Deprotonation of sodium acetylcyclopentadienide (11) was achieved by treatment with LDA in THF to generate the dianion equivalent [Cp-C(=CH(2))-O](2-)(12). Transmetalation with Cl(2)Ti(NMe(2))(2) gave ([Cp-C(=CH(2))-O]Ti(NMe(2))(2))(2) (17); treatment of 12 with Cl(2)Zr(NEt(2))(2)(THF)(2) furnished (([Cp-C(=CH(2))-O]Zr(NEt(2))(2))(2) (18). Cryoscopy in benzene revealed a dimeric structure of 18 in solution. Complex 18 was characterized further by an X-ray crystal structure analysis and by DFT calculations. The two zirconium centers of 18 are connected by means of two symmetry-equivalent eta(5):kappaO[Cp-C(=CH(2))-O] ligands. The ligand backbone shows no specific steric constraints, different from the formally related "constrained geometry" systems such as [Cp-SiMe(2)-NCMe(3)]Zr(NMe(2))(2) (1b). Nevertheless, upon treatment with MAO the CpCO group 4 metal complex system (18) generates an active homogeneous Ziegler-Natta catalyst for effective ethene/1-octene copolymerization, with up to 20% 1-octene having become incorporated in the resulting copolymer at 90 degrees C.  相似文献   

20.
The barrier to internal rotation and π-bonding in diborane peroxide are studied by ab initio calculations. The calculated potential curve for rotation about the peroxide bond is similar to related potential curves calculated for butadiene, glyoxal and diimine except for predicting only a single minimum in the trans position. The lack of another minimum is probably due to steric repulsions, and the results may be considered as demonstrating a degree of conjugation in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号