首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method has been developed for the quantitation of the antiepileptic drug vigabatrin (VGB) in human plasma. It is based on CE with LIF detection. The effect of the pH of the buffer and of N-methylglucamine (GLC) as BGE constituent was investigated. The final BGE consisted of 50 mM borate buffer, pH 9.0, with 100 mM GLC and enabled separation within 12 min at 20 kV voltage. An SPE procedure was used for the pretreatment of biological samples, based on mixed-mode lipophilic-cation exchange cartridges, followed by a derivatization step with 6-carboxyfluorescein-N-succinimidyl ester (CFSE). Fluorescence was excited by an Ar-ion laser (lambda(exc) = 488 nm). Linearity was observed in the 10-120 microg/mL plasma concentration range. Extraction yield was >96%, precision (expressed as RSD) <6.7% and accuracy (recovery) was between 97.0 and 101.6%. The method has been successfully applied to the analysis of VGB in plasma of epileptic patients undergoing therapy with the drug.  相似文献   

2.
Paliperidone is a new antipsychotic drug with a relatively low therapeutic concentration of 20–60 ng/mL. We established an accurate and sensitive CE method for the determination of paliperidone concentrations in human plasma in this study. To minimize matrix effect caused by quantification errors, paliperidone was extracted from human plasma using Oasis HLB SPE cartridges with three‐step washing procedure. To achieve sensitive quantification of paliperidone in human plasma, a high‐conductivity sample solution with sweeping‐MEKC method was applied for analysis. The separation is performed in a BGE composed of 75 mM phosphoric acid, 100 mM SDS, 12% acetonitrile, and 15% tetrahydrofuran. Sample solution consisted of 10% methanol in 250 mM phosphoric acid and the conductivity ratio between sample matrix and BGE was 2.0 (γ, sample/BGE). The results showed it able to detect paliperidone in plasma samples at concentration as low as 10 ng/mL (S/N = 3) with a linear range between 20 and 200 ng/mL. Compared to the conventional MEKC method, the sensitivity enhancement factor of the developed sweeping‐MEKC method was 100. Intra‐ and interday precision of peak area ratios were less than 6.03%; the method accuracy was between 93.4 and 97.9%. This method was successfully applied to the analysis of plasma samples of patients undergoing paliperidone treatment.  相似文献   

3.
A reliable micellar electrokinetic capillary chromatographic method was developed and validated for the determination of lamotrigine and its metabolites in human plasma and urine. The variation of different parameters, such as pH of the background electrolyte (BGE) and Sodium dodecyl sulfate (SDS) concentration, were evaluated in order to find optimal conditions. Best separation of the analytes was achieved using a BGE composed of 10 mM borate and 50 mM SDS, pH 9.5; melatonin was selected as the internal standard. Isolation of lamotrigine and its metabolites from plasma and urine was accomplished with an original solid-phase extraction procedure using hydrophilic-lypophilic balance cartridges. Good absolute recovery data and satisfactory precision values were obtained. The calibration plots for lamotrigine and its metabolites were linear over the 1-20 microg/mL concentration range. Sensitivity was satisfactory; the limits of detection and quantitation of lamotrigine were 500 ng/mL and 1 microg/mL, respectively. The application of the method to real plasma samples from epileptic patients under therapy with lamotrigine gave good results in terms of accuracy and selectivity, and in agreement with those obtained with an high-performance liquid chromatography (HPLC) method.  相似文献   

4.
A simple, rapid, and sensitive HPLC method based on 9H‐fluoren‐9‐ylmethyl chloroformate derivatization for the quantification of sertraline in rat plasma has been developed, requiring a plasma sample of only 0.1 mL, which was deproteinized and derivatized for 5 min in two single steps. The obtained derivative was stable at room temperature and was determined by HPLC using a fluorescence detector. The analytical column was a C(18) column and the mobile phase was acetonitrile and water (80:20, v/v). Calibration curves were linear in the range of 10–500 ng/mL. The limit of detection was approximately 3 ng/mL, and the lower limit of quantification was established at 10 ng/mL. The bias of the method was lower than 10%, and the within day as well as between day, relative standard deviations were lower than 12%. This analytical method was successfully applied to characterize sertraline pharmacokinetics in rats following intravenous (t1/2 = 213 ± 48 min, Cl = 43.1 ± 8.7 mL/min, Vd = 11560 ± 1861 mL) and oral (Cmax = 156 ± 76 ng/mL, tmax = 63.8 ± 16.3 min) administration of 2 and 5 mg, respectively.  相似文献   

5.
A sensitive and rapid liquid chromatographic/tandem mass spectrometric method was developed and validated for the determination of sertraline in human plasma. The analyte and internal standard (IS, diphenhydramine) were extracted with 3 mL of diethyl ether/dichloromethane (2:1, v/v) from 0.25 mL plasma, then separated on a Zorbax Eclipse XDB C18 column using methanol/water/formic acid (75:25:0.1, v/v/v) as the mobile phase. The triple quadrupole mass spectrometry was applied via an atmospheric pressure chemical ionization (APCI) source for detection. The fragmentation pattern of the protonated sertraline was elucidated with the aid of product mass spectra of isotopologous peaks. Quantification was performed using selected reaction monitoring of the transitions of m/z 306 --> 159 for sertraline and m/z 256 --> 167 for the IS. The method was linear over the concentration range of 0.10-100 ng/mL. The intra-day and inter-day precisions, expressed by relative standard deviation, were both less than 6.7%. Assay accuracies were within +/-6.9% as terms of relative error. The lower limit of quantification (LLOQ) was identifiable and reproducible at 0.10 ng/mL with a precision of 8.3% and an accuracy of 9.6%. The validated method has been successfully applied for the pharmacokinetic study and bioequivalence evaluation of sertraline in 18 healthy volunteers after a single oral administration of 50 mg sertraline hydrochloride tablets.  相似文献   

6.
A sensitive, simple, and specific liquid chromatographic method coupled with electrospray ionization-mass spectrometry (MS) is presented for the determination of sertraline in plasma. With zaleplon as the internal standard, sertraline is extracted from the alkalized plasma with cyclohexane. The organic layer is evaporated and the residue is redissolved in the mobile phase of methanol-10 mmol/L ammonium acetate solution-acetonitrile (62:28:10, v/v/v). An aliquot of 20 microL is chromatographically analyzed on a Shimadzu ODS C18 column (5 microm, 150- x 4.6-mm i.d.) by means of selected-ion monitoring mode of MS. The calibration curve of sertraline in plasma exhibits a linear range from 0.5 to 25.0 ng/mL with a correlation coefficient of 0.9998. The limit of quantitation is 0.5 ng/mL. The intra- and interday variations (relative standard deviation) are less than 7.8% and 9.5% (n = 5), respectively. The application of this method is demonstrated for the analysis of sertraline plasma samples in a human pharmacokinetic study.  相似文献   

7.
A rapid and sensitive LC-MS-MS method for the quantitation of sertraline in human plasma was developed and validated. Sertraline and the internal standard, telmisartan, were cleaned up by protein precipitation from 100 μL of plasma sample, and analyzed on a TC-C18 column (5 μm, 150 × 4.6 mm i.d.) using 70% acetonitrile and 30% 10 mM ammonium acetate (0.1% formic acid) as mobile phase. The method was demonstrated to be linear from 0.1 ng/mL to 50 ng/mL with the lower limit of quantitation of 0.1 ng/mL. Intra- and inter-day precision were below 4.40% and 3.55%. Recoveries of sertraline at low, medium, and high levels were 88.0 ± 2.3%, 88.2 ± 1.9%, and 90.0 ± 2.0%, respectively. The method was successfully applied to a bioequivalence study of sertraline after a single oral administration of 50 mg sertraline hydrochloride tablets.  相似文献   

8.
Nojavan S  Fakhari AR 《Electrophoresis》2011,32(6-7):764-771
In the present study, a very simple CE method for chiral separation and quantitation of zwitterionic cetirizine (CTZ), as the main metabolite of hydroxyzine (HZ), and HZ has been developed. In addition, the effect of zwitterionic property of CTZ on enantioseparation was investigated. Maltodextrin, a linear polysaccharide, as a chiral selector was used and several parameters affecting the separation such as pH of BGE, concentration of chiral selector and applied voltage were studied. The best BGE conditions for CTZ and HZ enantiomers were optimized as 75 mM sodium phosphate solution at pH of 2.0, containing 5% w/v maltodextrin. Results showed that, compared to HZ, pH of BGE was an effective parameter in enantioseparation of CTZ due to the zwitterionic property of CTZ. The linear range of the method was over 30-1200 ng/mL for all enantiomers of CTZ and HZ. The quantification and detection limits (S/N=3) of all enantiomers were 30 and 10 ng/mL, respectively. The method was used to quantitative enantioseparation of CTZ and HZ in spiked human plasma.  相似文献   

9.
EKC methods for the enantiomeric resolution of homocamptothecin derivatives, potent anticancer agents targeting DNA topoisomerase I selected for clinical trials, were developed using highly sulfated beta-CD as chiral selectors at acidic pH. Optimal electrophoretic conditions, with migration times under 15 min, were as follows: for the neutral homocamptothecin analog 1, a BGE of 75 mM phosphate buffer pH 2.5 (H(3)PO(4) + triethanolamine)/ACN - 95/5 v/v, with 7.5% w/v highly S-beta-CD, an applied field of 0.2 kV/cm and a fused capillary temperature control of 30 +/- 0.1 degrees C (typical current approximately 175 microA); for the cationic homocamptothecin 2, a BGE of 25 mM phosphate buffer pH 2.5 (H(3)PO(4) + TEA)/ACN - 90/10 v/v, with 2.5% w/v highly S-beta-CD, an applied field of 0.15 kV/cm and a fused capillary temperature control of 25 +/- 0.1 degrees C (typical current approximately 45 muA), and both are validated. The best results in terms of LOQ were obtained by EC with fluorescence detection: 10 ng/mL and 20 ng/mL for 1 and 2, respectively (LOQ divided by 150 for 1 and 5 for 2 with respect to UV), thus making this method particularly convenient for enantiomeric purity determination of galenic forms. UV detection appears to be an alternative to fluorescence for the analysis of the main component either for the control of galenic forms or for therapeutic adaptation. Moreover, this method exhibits better performances than HPLC.  相似文献   

10.
Several commercial immobilized metal affinity chromatography sorbents were evaluated in this study for the analysis of two small peptide fragments of the amyloid β‐protein (Aβ) (Aβ(1–15) and Aβ(10–20) peptides) by on‐line immobilized metal affinity SPE‐CE (IMA‐SPE‐CE). The performance of a nickel metal ion (Ni(II)) sorbent based on nitrilotriacetic acid as a chelating agent was significantly better than two copper metal ion (Cu(II)) sorbents based on iminodiacetic acid. A BGE of 25 mM phosphate (pH 7.4) and an eluent of 50 mM imidazole (in BGE) yielded a 25‐fold and 5‐fold decrease in the LODs by IMA‐SPE‐CE‐UV for Aβ(1–15) and Aβ(10–20) peptides (0.1 and 0.5 μg/mL, respectively) with regard to CE‐UV (2.5 μg/mL for both peptides). The phosphate BGE was also used in IMA‐SPE‐CE‐MS, but the eluent needed to be substituted by a 0.5% HAc v/v solution. Under optimum preconcentration and detection conditions, reproducibility of peak areas and migration times was acceptable (23.2 and 12.0%RSD, respectively). The method was more sensitive for Aβ(10–20) peptide, which could be detected until 0.25 μg/mL. Linearity for Aβ(10–20) peptide was good in a narrow concentration range (0.25–2.5 μg/mL, R2 = 0.93). Lastly, the potential of the optimized Ni(II)‐IMA‐SPE‐CE‐MS method for the analysis of amyloid peptides in biological fluids was evaluated by analyzing spiked plasma and serum samples.  相似文献   

11.
A method for the resolution of a peptides mixture including hepcidin‐25, an iron metabolism marker, was developed by CE‐ESI‐MS. Several strategies were tested to optimize peptide separation, such as the addition of cyclodextrins or organic solvents in the BGE or the use of coated capillaries. Best results in terms of resolution, symmetry and efficiency were obtained with a BGE made of 500 mM ammonium acetate pH 4.5/ACN 70:30 v/v. Using the methodology of experimental design, BGE concentration, sheath liquid composition and MS‐coupling parameters were then optimized in order to obtain the best signal intensity for hepcidin. Finally, a 225 mM BGE and a sheath liquid composed of isopropanol/water 80:20 v/v containing 0.5% v/v formic acid were selected as it constitutes the best compromise for selectivity, peak shape and sensitivity.  相似文献   

12.
A sensitive and fast HPLC/MS/MS method for measurement of sufentanil and morphine in plasma was developed and validated. A single liquid-liquid extraction in alkaline medium was used for the cleanup of plasma, and fentanyl was added as an internal standard (IS). The analyses were carried out using a C18 column and the mobile phase acetonitrile-5 mM ammonium acetate + 0.25% formic acid (70 + 30, v/v). The triple-quadrupole mass spectrometer equipped with an electrospray source in positive mode was set up in the selective reaction monitoring mode to detect precursor --> product ion transition 387.0 > 238.0, 285.7 > 165.1, and 337.0 > 188.0 for sufentanil, morphine, and IS, respectively. The method was linear in the 0.05 (LOQ) - 500 ng/mL range for sufentanil and 10 (LOQ) - 1000 ng/mL range for morphine. Good selectivity, linearity, precision, accuracy, and robustness were obtained for the HPLC/MS/MS method. The proposed method was successfully applied for the determination of sufentanil and morphine in patients undergoing cardiac surgery.  相似文献   

13.
A Kunkel  H W?tzig 《Electrophoresis》1999,20(12):2379-2389
A number of pharmaceuticals (e.g., acetaminophen, salicylic acid, sulfamethoxazole, theophylline, tolbutamide and trimethoprim) have been determined in human plasma by micellar electrokinetic chromatography (MEKC), without sample pretreatment, using underivatized fused-silica capillaries. The total analysis time was only 10 min. A sodium dodecyl sulfate (SDS)-containing borate buffer (60 mM with 200 mM SDS) at pH 10 was used. Between runs, proteins adsorbed to the capillary wall are removed by rinsing with SDS buffer and either acetonitrile (e.g., 50% v/v) or isopropanol (e.g., 10% v/v). Other rinsing procedures are discussed (salts, enzyme-containing solutions, organic solvents, sodium hydroxide, hydrofluoric acid). The separation system is tested in a concentration range between 10 ng/mL and 100 microg/mL; a detection limit of about 20 ng/mL can readily be obtained. The sensitivity was substantially improved using isopropanol as buffer additive. A day-to-day precision for relative peak areas of 1-2% relative standard deviation (RSD, n > 40) was reached in the upper concentration range. Under repeatability conditions, these values could also be obtained for low microg/mL concentrations. Thus, not only drug monitoring but also pharmacokinetic investigations from blood plasma become possible without further sample pretreatment.  相似文献   

14.
In this study, we described a high‐sensitive on‐line preconcentration method for cypromazine (CYP) and melamine (MEL) analysis using cation‐selective exhaustive injection (CSEI) combined with sweeping‐MEKC. The optimum conditions of on‐line concentration and separation were discussed. The BGE contained 100 mM SDS, 50 mM phosphoric acid (pH=2.0) and 15% acetonitrile (v/v). The sample was injected at 10 kV for 600 s, separated at ?20 kV, and detected at 210 nm. The sensitivity enhancements were 6222 for CYP and 9179 for MEL. The linear dynamic ranges were 0.4?25 ng/mL for CYP (r=0.9995) and 0.2?12 ng/mL for MEL (r=0.9991). The LODs (signal‐to‐noise ratio, 3) were 43.7 and 23.4 pg/mL for CYP and MEL, respectively. The proposed method was applied to analyze CYP and MEL in dairy products pretreated using off‐line SPE to minimize the influence of the matrix. The recoveries of CYP and MEL were satisfactory (ca. 74–83%). The experimental results suggest that the CSEI‐sweeping‐MEKC method is feasible for the application to simultaneously detect trace levels of CYP and its metabolite MEL in real milk samples.  相似文献   

15.
A highly sensitive liquid chromatographic-tandem mass spectrometric method (LC-MS-MS) is developed to quantitate ranolazine in human plasma. The analyte and internal standard tramadol are extracted from plasma by liquid-liquid extraction using diethyl ether-dichloromethane (60:40 v/v), and separated on a Zorbax extend C(18) column using methanol-10mM ammonium acetate (60:40 v/v, pH 4.0) at a flow of 1.0 mL/min. Detection is carried out by multiple reaction monitoring on a QtrapTM LC-MS-MS system with an electrospray ionization interface. The assay is linear over the range 10-5000 ng/mL with a limit of quantitation of 10 ng/mL and a lower limit of detection (S/N > 3) of 1 ng/mL. Intra- and inter-day precision are < 3.1% and < 2.8%, respectively, and the accuracy is in the range 96.7-101.6%. The validated method is successfully used to analyze the drug in samples of human plasma for pharmacokinetic studies.  相似文献   

16.
One CE method was established for detecting deferoxamine (DFO) and deferiprone (DFR) in plasma. For β‐thalassemia patients, DFO and DFR are major medicines to treat the iron overload caused by blood transfusion. Field‐amplified sample injection combined with sweeping was used for sensitivity enhancement in CE. This method was performed on an uncoated fused‐silica capillary. After liquid–liquid extraction, the plasma samples were electrokinetically injected into capillary at +10 kV for 180 s. The phosphate buffer (100 mM) containing 50 mM triethanolamine was used as the BGE (pH 6.6). Separation buffer was phosphate buffer (100 mM, pH 3.0) containing 150 mM SDS. This method showed good linearity (r ≥ 0.9960). Precision and accuracy were evaluated by the results of RSD and relative error of intrabatch and interbatch analyses, and all of the absolute values were less than 6.12%. The LODs (S/N = 3) were 200 ng/mL for DFO, and 25 ng/mL for DFR. The LOQ (S/N = 10) of DFO and DFR were 600 and 75 ng/mL, respectively. This method was applied for clinical applications of five β‐thalassemia patients.  相似文献   

17.
A rapid capillary electrophoretic method for the analysis of three alkylphosphonate drugs (i.e. fosfomycin disodium (FOS), clodronate disodium (CLO) and alendronate sodium (ALN)) was developed by using multiple probe BGE and indirect UV detection. BGE containing 30 mM benzoic acid, 5 mM salicylic acid and 0.5 mM CTAB (pH 3.8), temperature of 30°C, applied voltage of ?30 kV and detection at 220 nm provided baseline separation of all analytes (resolution (R)>2.2) in 3.2 min. EOF reversal by addition of CTAB and negative voltage polarity leading to the co‐EOF flow and short analysis time. Two probe BGE greatly improved peak symmetry. The method showed good linearity (r2>0.999 in ranges of 20–1000 μg/mL for FOS, 100–1000 μg/mL for CLO and 100–750 μg/mL for ALN) repeatablitiy (RSD<2.15%), recovery (99.3–101.1%) and sensitivity (LOD<50 μg/mL). Freshly prepared BGE and sample solutions are essential for the method precision and accuracy. This new method can be utilized for routine analysis of FOS, CLO and ALN in dosage forms because of its efficiency, reliability, speed and simplicity.  相似文献   

18.
《Electrophoresis》2018,39(16):2099-2106
A method consisting of cation‐selective exhaustive injection and sweeping (CSEI‐sweeping) as online preconcentration followed by a cyclodextrin modified electrokinetic chromatography (CDEKC) enantioseparation has been developed for the simultaneous determination of two brompheniramine enantiomers in rat plasma. In this method, analytes were electrokinetically injected at a voltage of 8 kV for 80 s in a fused‐silica capillary. Prior to the injection, the capillary was rinsed with 50 mM phosphate buffer of pH 3.5, followed by a plug of a higher conductivity buffer (150 mM phosphate pH 3.5, 20 psi, 6 min) and a plug of water (0.5 psi, 5 s). Separation was carried out applying –20 kV in 50 mM phosphate buffer, pH 3.5, containing 10% v/v ACN and 30 mg/mL sulfated‐β‐cyclodextrin (S‐β‐CD). Analytical signals were monitored at 210 nm. The detection sensitivity of brompheniramine enantiomers was enhanced by about 2400‐fold compared to the normal injection mode (hydrodynamic injection for 3 s at 0.5 psi, with a BGE of 50 mM phosphate buffer containing 20 mg/mL S‐β‐CD at pH 3.5), and LLOQ of two enantiomers were both 0.0100 μg/mL. In addition, this method had fairly good repeatability and showed promising capabilities in the application of stereoselective pharmacokinetic investigations for brompheniramine enantiomers in rat.  相似文献   

19.
An inexpensive, rapid and reproducible capillary electrophoretic method has been developed and validated for the determination of metformin in pharmaceutical preparations. The method was developed utilizing a fused silica capillary (60 cm x 50 microm I.D.), phosphate buffer (50 mM, 3.0 pH)-acetonitrile (95:5, v/v) as background electrolyte (BGE), 20 kV applied voltage with UV detection at 254 nm and at a working temperature of 23 +/- 1 degrees C. Linearity was observed in the concentration range from 100 ng/L to 5 microg/L, with a correlation coefficient (R2) of 0.9998. The limits of detection and quantification achieved were 60 and 100 ng/mL, respectively. The recovery of metformin from pharmaceutical preparations was 99.1%. These validation parameters demonstrate the precision of the method and its suitability for the determination of metformin in pharmaceutical tablet formulations.  相似文献   

20.
A capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) method was developed for the analysis of the acetylcholinesterase inhibitor rivastigmine. Several electrophoretic and ESI-MS parameters were investigated in order to improve sensitivity. These parameters were categorized in three areas: (i) background electrolyte (BGE) parameters, (ii) sheath liquid parameters, and (iii) spray chamber parameters. The optimized results were obtained by using 40-mM ammonium acetate at pH 9 as BGE, a sheath liquid of 1% acetic acid in water:MeOH (50:50 v/v) at a flow rate of 10?μL/min, and a drying gas flow rate that was set at 6 L/min and at a temperature of 200°C. These parameters provided limit of detection and limit of quantitation of 2.8?ng/mL and 8.4?ng/mL, respectively. The optimal CZE-ESI-MS conditions were applied to a plasma sample obtained from an Alzheimer's disease patient following rivastigmine patch administration, and the mean (±standard deviation) plasma concentration was estimated to be 14.6 (±1.7)?ng/mL. Several sample preparation procedures were examined, and solid-phase extraction using a C18 cartridge proved to be the most effective procedure, since higher sensitivity and recovery were obtained. In addition, precision was evaluated based on migration time and peak area in plasma, and the relative standard deviations were in the range of 0.10-0.16% and 0.62-9.0%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号