首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, a novel polar monolithic capillary column is described for normal phase CEC (NP-CEC) of representative polar compounds including mono- and oligosaccharides, peptides, and basic drugs. The polar monolithic column, which was described in detail in the preceding paper, consisted of silica-based monolith bonded with 1H-imidazole-4,5-dicarbonitrile (IDCN) and is denoted as 2CN-OH-Monolith. Various retention parameters for neutral polar solutes (e.g., mono- and oligosaccharides) and charged polar solutes (e.g., peptides and basic drugs) were evaluated over a wide-range of elution conditions. These retention parameters yielded quantitative assessment for the polar interactions between the model solutes and the stationary phase under investigation as well as the effect of electromigration of charged solutes on their overall migration in NP-CEC. Furthermore, this investigation demonstrated that despite the possibility of achieving isocratic separation in NP-CEC for widely differing polar species, multistep-gradient elution in NP-CEC is preferred to bring about the rapid separation of a large number of polar species in a single run.  相似文献   

2.
Monodisperse poly(glycidyl methacrylate-divinylbenzene) microspheres were functionalized with propyl sulfonic acid moieties to obtain beads negatively charged in a wide pH range. They were packed into fused-silica capillary of 50 micro, I.D. in order to separate proteins by capillary electrochromatography (CEC). Baseline separation of four basic proteins as well as three cytochrome c variants with an average column efficiency of 60,000 theoretical plates was obtained under isocratic elution conditions. The high efficiency is attributed to the uniformity of the column packing and the hydrophilic surface coverage of the polymer beads derived from the functionalization process. The effect of pH and salt concentration on protein separations was investigated and the results showed that the CEC separation mechanism is the combination of chromatographic retention and electrophoretic migration. Moreover, the column packed with the strongly acidic poly(glycidyl methacrylate-divinylbenzene) beads was also suitable for protein separations by micro-HPLC with a salt gradient. The comparison between the two kinds of elution modes shows that the column described here exhibited higher peak efficiency with isocratic elution in CEC than with gradient elution in micro-HPLC.  相似文献   

3.
对硅胶电色谱柱的性能进行了考察,发现在水/有机溶剂流动相条件下,几乎不存在气泡问题,流动相的组成在有机溶剂浓度、电解质浓度、PH值等方面可以在较大范围变化,选用5种典型样品,对硅胶电色谱的分离机理进行了系统研究,发现有反相分离机理、正相吸附机理、离子交换机理以及电泳机理参与作用。同时考察了有机溶剂浓度、电解质浓度、PH等对分离的影响。此外,还首次提出了一种全新的电色谱模式-动态改性硅胶电色谱。  相似文献   

4.
A neutral, nonpolar monolithic capillary column was evaluated as a hydrophobic stationary phase in pressurized CEC system for neutral, acidic and basic solutes. The monolith was prepared by in situ copolymerization of octadecyl methacrylate and ethylene dimethacrylate in a binary porogenic solvent consisting of cyclohexanol/1,4‐butanediol. EOF in this hydrophobic monolithic column was poor; even the pH value of the mobile phase was high. Because of the absence of fixed charges, the monolithic capillary column was free of electrostatic interactions with charged solutes. Separations of neutral solutes were based on the hydrophobic mechanism with the pressure as the driving force. The acidic and basic solutes were separated under pressurized CEC mode with the pressure and electrophoretic mobility as the driving force. The separation selectivity of charged solutes were based on their differences in electrophoretic mobility and hydrophobic interaction with the stationary phase, and no obvious peak tailing for basic analytes was observed. Effects of the mobile phase compositions on the retention of acidic compounds were also investigated. Under optimized conditions, high plate counts reaching 82 000 plates/m for neutral compounds, 134 000 plates/m for acid compounds and 150 000 plates/m for basic compounds were readily obtained.  相似文献   

5.
The potential of 3-(4-sulfo-1,8-naphthalimido)propyl-modified silyl silica gel (SNAIP) as a mixed-mode stationary phase for capillary electrochromatography (CEC) was investigated for the separation of charged analytes, taking four amino acids (tyrosine, phenylalanine, tryptophan, histidine) as model analytes. The elution process of these charged analytes in CEC with SNAIP was dominated by a combination of both electrophoretic process and chromatographic process involving hydrophobic as well as electrostatic interactions. In order to study the retention mechanism, the CEC retention factor k* and the velocity factor ke* were measured for the amino acids, which allowed the assessment of the respective contribution from the differential processes underlying the separation. Migration and retention could be mediated by changing various mobile phase compositions, including buffer pH, buffer concentration, and concentration of organic solvent. Based on the results obtained by separation of the amino acids, the separation of eight peptides (Gly-Val, Gly-Phe, Gly-Ile, Gly-His, Gly-Lys, Lys-Lys, Gly-Gly-Gly, Gly-Gly-His) was attempted. A good separation was achieved under an isocratic elution with a mobile phase consisting of 35 mM phosphate buffer (pH 3.8) and 40% methanol.  相似文献   

6.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

7.
The potential of methacrylate-based mixed-mode monolithic stationary phases bearing sulfonic acid groups for the separation of positively charged analytes (alkylanilines, amino acids, and peptides) by capillary electrochromatography (CEC) is investigated. The retention mechanism of protonated alkylanilines as positively charged model solutes on these negatively charged mixed-mode stationary phases is investigated by studying the influence of mobile phase and stationary phase parameters on the corrected retention factor which was calculated by taking the electrophoretic mobility of the solutes into consideration. It is shown that both solvophobic and ion-exchange interactions contribute to the retention of these analytes. The dependence of the corrected retention factor on (1) the concentration of the counter ion ammonium and (2) the number of methylene groups in the alkyl chain of the model analytes investigated shows clearly that a one-site model (solvophobic and ion-exchange interactions take place simultaneously at a single type of site) has to be taken to describe the retention behaviour observed. Comparison of the CEC separation of these charged analytes with electrophoretic mobilities determined by open-tubular capillary electrophoresis shows that mainly chromatographic interactions (solvophobic and ion-exchange interactions) are responsible for the selectivity observed in CEC, while the electrophoretic migration of these analytes plays only a minor role.  相似文献   

8.
The potential of 1.7 μm ethylene bridged hybrid silica phase was investigated for the separation of twelve imidazolium-based ionic liquid cations. U-shaped retention profile was observed for all solutes with an increase in retention at both low and high acetonitrile content. Chromatographic behaviour of imidazolium cations in both hydrophilic interaction chromatography (HILIC) and per aqueous liquid chromatography (PALC) modes was studied by varying key parameters such as buffer concentration and pH, acid additive, organic modifier and column temperature. Experimental data provided some evidences that under PALC conditions cationic solutes are retained predominantly by mixed hydrophobic/ion-exchange interactions. In the HILIC mode, both partitioning and ion-exchange interactions are responsible for the retention of solutes. Compared to PALC, HILIC provided significantly higher efficiencies with less or even no peak tailing, better separation selectivity and greater resistance to overload. In PALC mode gradient elution was required to achieve adequate retentivity of all solutes but selectivity was not sufficient to distinguish between solutes with very similar hydrophobicity. In contrast, under HILIC conditions twelve solutes were almost completely resolved in less than 4 min by using isocratic elution. Summarizing, it could be concluded that ethylene bridged hybrid silica column providing a dual retention mechanism offers the possibility of selecting between the two retention modes with opposite separation selectivity, just by changing the composition of the mobile phase.  相似文献   

9.
The use of capillary electrochromatography (CEC) for the separation by isocratic elution of synthetic peptides, proteins as well as the tryptic digest of cytochrome c has been demonstrated. The monolithic porous stationary phase was prepared from silanized fused-silica capillaries of 75 microm I.D. by in situ copolymerization of vinylbenzyl chloride and ethylene glycol dimethacrylate in the presence of propanol and formamide as the porogens. The chloromethyl groups at the surface of the porous monolith were reacted with N,N-dimethylbutylamine to form a positively charged chromatographic surface with fixed n-butyl chains. Results of studies on the influence of temperature and mobile phase composition on the retention and selectivity of separation by CEC demonstrated the feasibility of rapid polypeptide analysis and tryptic mapping at elevated temperature with high resolution and efficiency. Typically the chromatography of a tryptic digest of cytochrome c took about 5 min at 55 degrees C and 75 kV/m with hydro-organic mobile phases containing acetonitrile in 50 mM phosphate buffer, pH 2.5. For peptides and proteins plots of logarithmic k'cec against acetonitrile concentration were nonlinear, whereas Arrhenius plots for the mobilities were nearly linear. Comparison of the separation of such samples under conditions of CEC and capillary zone electrophoresis (CZE) indicates that the mechanism of separation in CEC is unique and leads to a chromatographic profile different from that obtained by CZE.  相似文献   

10.
The retention behaviour and selectivity of selected basic, neutral and acidic peptides have been studied by capillary electroendoosmotic chromatography (CEC) with Hypersil C8, C18, Hypersil mixed-mode, and Spherisorb C18/SCX columns, 250 (335) mm x 100 microns, packed with 3 microns particles, and eluted with mobile phases composed of acetonitrile-triethylamine-phosphoric acid (TEAP) at pH 3.0 using a Hewlett-Packard Model HP3DCE capillary electrophoresis system. The selected peptides were desmopressin (D), two analogues (A and B) of desmopressin, oxytocin (O) and carbetocin (C). The peptides eluted either before or after the electroendoosmotic flow (EOF) marker, depending on the concentration of acetonitrile used and the buffer ionic strength. The retention and selectivity of these peptides under CEC conditions were compared to their behaviour in free zone capillary electrophoresis (CZE), where the separation mode was based on the electrophoretic migration of the analytes due to their charge and Stokes radius properties. In addition, their retention behaviour in RP-HPLC was also examined. As a result, it can be concluded that the elution process of this group of synthetic peptides in CEC with a TEAP buffer at pH 3.0 is mediated by a combination of both electrophoretic migration processes and retention mechanisms involving hydrophobic as well as silanophilic interactions. This CEC method when operated with these 3 microns reversed-phase and mixed-mode sorbents with peptides is thus a hybrid of two well-known analytical methods, namely CZE and RP-HPLC. However, the retention behaviour and selectivity of the selected peptides differs significantly in the CEC mode compared to the RP-HPLC or CZE modes. Therefore this CEC method with these peptides represents an orthogonal analytical separation procedure that is complimentary to both of these alternative techniques.  相似文献   

11.
Mixed packing capillary electrochromatography (MP CEC) with the stationary phase comprising a physical mixture of strong cation exchange (SCX) phase and octadecysilyl (ODS) phase was developed. With the existence of a sulfonic acid group on the surface of SCX, not only could the electroosmotic flow (EOF) remain high at low pH, but also the hydrophilicity of the stationary phase was increased greatly, leading to broad adaptable ranges of both pH and organic modifier concentration in the mobile phase. At the same time, with the coexistence of C18 on the surface of ODS, both the retention and the resolution of samples were improved. Accordingly, MP CEC combined the advantages of both SCX and ODS columns. Effects of operation parameters on EOF and the capacity factors of solutes as well as the retention mechanism of such a column were studied systematically. In addition, MP CEC columns were used in the analysis of strong polar solutes as well as for the high speed separation of acidic, basic, and neutral compounds in a single run.  相似文献   

12.
13.
Summary The chromatographic properties of an alkylphosphonate-modified magnesia-zirconia composite stationary phase have been investigated by reversed-phase high-performance liquid chromatography with basic compounds as probes. The influence of organic modifier composition and mobile phase pH was studied. The new stationary phase, similar to a silica-based reversed-phase stationary phase, has hydrophobic properties, but greater pH stability. Use of the phase results in more symmetric peaks for basic compounds. A possible mechanism of retention of basic solutes on the new stationary phase is discussed. The chromatographic behavior of the basic solutes depends mainly on hydrophobic interactions between the solutes and the hydrophobic moiety of the stationary phase. Br?nsted acidic and basic sites on the surface of the new stationary phase play an important role in the retention of ionized solutes by ion-exchange interaction. Promising separations of some basic compounds have been achieved by use of methanolic TRIS buffer, pH 10.0, as the mobile phase.  相似文献   

14.
A neutral naphthyl methacrylate‐based monolith (NMM) was introduced for RP‐CEC of various aromatic compounds via hydrophobic and π interactions. It was characterized over a wide range of elution conditions to gain insight into its RP retention mechanism toward the various solute probes under investigation. First, the NMM column exhibited cathodal EOF at various mobile phase compositions and pH suggesting that although the NMM column is void of fixed charges, it acquires a negative zeta potential. It is believed that the negative zeta potential is imparted by the adsorption of mobile phase ions to the NMM surface. The NMM column exhibited π–π interactions in addition to hydrophobic interactions due to the aromatic and nonpolar nature of its naphthyl ligands. In all cases, the retention of the various aromatic test solutes including PAHs, benzene derivatives, toluene derivatives, anilines and toluidine, tolunitrile and nitrotoluene positional isomers on the NMM column were compared to their retention on an octadecyl acrylate‐based monolithic column. Not only were the values of the retention factors of the various solutes on the NMM column higher than those obtained on the octadecyl acrylate‐based monolithic column under otherwise the same CEC conditions, but the elution orders were also different on both columns with a superior and unique selectivity exhibited by the NMM column.  相似文献   

15.
A novel monolithic silica column that has a polar‐embedded amide‐secondary amine group linking with C16 functionality for RP‐CEC is described. The amide‐secondary aminealkyloxysilane was synthesized by the reaction of 3‐(2‐aminoethylamino) propyltrimethoxysilane with hexadecanoyl chloride. Then, the silylant agent was bonded to the silica monolith matrix to produce hexadecanamide‐secondary amine bonded silica (HDAIS) monolithic column. The electrochromatographic performance of HDAIS monolithic column for the separation of neutral, basic and polar solutes was studied, which was compared to that using the hexadecyl bonded silica monolithic column. The HDAIS monolithic column displayed reduced hydrophobic retention characteristics in the separation of five hydrophobic n‐alkylbenzenes and four polar phenols when compared to the hexadecyl bonded silica monolithic column. A very much reduced silanol activity of HDAIS monolithic column was observed in the separation of test basic mixture including four aromatic amines, atenolol and metoprolol with 10 mM borate buffer (pH 7.5) containing 30% v/v ACN as the mobile phase. The comparison results indicate good performance for both polar and basic mixtures on HDAIS monolithic column in RP‐CEC, and also show promising results for further applications.  相似文献   

16.
A novel synthetic route to amphiphilic acrylamide-based monolithic stationary phases for capillary electrochromatography (CEC) employing water-soluble cyclodextrins as solubilizing agents was explored. N,N'-Octamethylenebisacryamide and N,N'-dodecamethylenebisacryamide were synthesized and their solubilization in aqueous solution with derivatized and underivatized cyclodextrins of different cavity size was studied. Amphiphilic stationary phases were synthesized by free radical copolymerization of the bisacrylamide-cyclodextrin host-guest complexes with hydrophilic monomers and an additional hydrophilic cross-linker in aqueous solution. Complex formation in solution and removal of the complexed cyclodextrin from the polymer during synthesis was studied with 1H-NMR and solid state 13C-NMR spectroscopy and cyclodextrin-modified micellar electrokinetic chromatography. The impact of the incorporated alkylene groups in the acrylamide-based macroporous polymer on retention was studied with neutral solutes by CEC in the normal-phase elution mode and in the reversed-phase elution mode. Batch-to-batch reproducibility of the synthesis procedure and day-to-day repeatability of the separations achieved were investigated. With these capillaries, a sufficiently high electroosmotic flow velocity, a high reproducibility and repeatability of separation parameters and high plate numbers (up to 200,000 m(-1) were obtained.  相似文献   

17.
Bare silica can be used with reversed phase eluents for the chromatographic separation of basic analytes. It provides high surface charge density within a certain pH range, thus generating a high electroosmotic flow (EOF) when applied in electrochromatography. The influence of pore size on EOF velocity and mass transport is demonstrated. High EOF and fast mass transfer were encountered with 100 nm and 200 nm material and related to a pore perfusion mechanism. On a silica with 200 nm average pore size at pH 7, an EOF velocity of 2 mm/s was obtained at 600 V/cm. Silicas with pore diameters between 6 nm and 200 nm, corresponding to surface areas between 500 m/g and 10 m/g (data calculated from inverse size exclusion chromatography experiments), were used for CEC and HPLC separation of strongly basic solutes. On separation of tricyclic antidepressants by CEC, “normal” and “abnormal” efficiencies were achieved and were found to vary with the charge density within the separation column.  相似文献   

18.
The beneficial effects of high temperature on separation and detection of basic compounds, the detection being performed by MS via ESI, are investigated. The influence of various parameters on both separation and detection performances is studied. These parameters include the mobile phase pH, the temperature, and the type of stationary phase. Experiments are performed under gradient elution conditions. The results obtained with four different supports, silica-, zirconia-, carbon-, and polymer-based columns, are compared by means of different criteria including the elution composition, the peak asymmetry, and the S/N. High temperature liquid chromatography at high pH with volatile buffers suitable for MS detection was shown to be an interesting choice for solutes with basic sites.  相似文献   

19.
毛细管电色谱是在毛细管中依靠电渗流来驱动流动相 ,同时溶质与固定相发生相互作用的一种色谱分离模式 ,它有高效液相色谱的高选择性 ,同时兼具毛细管电泳的高效性 [1] .传统电色谱柱是将HPLC填料装入毛细管 ,但由于装柱困难且易产生气泡而在一定程度上阻碍了电色谱的发展 [2~ 4 ] .通过柱内合成的方法直接在毛细管中制成连续床毛细管电色谱柱 ,可避免两端烧塞 . 1 995年 Svec等 [5,6]首次将连续床层色谱柱用于毛细管电色谱 ,此后 ,有关毛细管中原位合成连续床电色谱柱的方法得到了应用 [7~ 11] .为了使原位合成电色谱柱能产生电渗流 ,…  相似文献   

20.
A monolithic silica stationary phase functionalized with an enantioselective strong cation exchanger based on an aminosulfonic acid derivative was used for chiral separations of basic test solutes by nonaqueous CEC and capillary LC. The effects of the applied electric field as well as the ionic strength in the eluent on electrokinetic and chromatographic contributions to the overall separation performance in the electrically driven mode were investigated. Hence, under the utilized experimental conditions, i. e., at an electric field strength in the range of approximately 120-720 V/cm (applied voltages 4-24 kV) and an ionic strength of the counterion between 5 and 25 mM (at constant acid-to-base, i. e., co- to counterion ratio of 2:1), no deviations from the expected linearity of the EOF were observed. This led to the conclusion that an occurrence of the so-called electrokinetic effects of the second kind resulting from electric double layer overlap inside the mesopores of the monolithic stationary phase and concentration polarization phenomena were largely negligible. Additional support to this conclusion was inferred from the observed independence of CEC retention factors on the electric field strength across the investigated ionic strength range of the BGE. As a consequence, a simple framework allowing for calculation of the CEC mobilities from the individual separation contributions, viz. electroosmotic and electrophoretic mobilities as well as retention factors, could be applied to model CEC migration. There was a reasonable agreement between calculated and experimental CEC mobility data with deviations typically below 5%. The deconvolution of the individual contributions to CEC migration and separation is of particular value for the understanding of the separation processes in which electrophoretic migration of ionic sample constituents plays a significant role like in ion-exchange CEC and may aid the optimization procedure of the BGE and other experimental conditions such as the optimization of the surface chemistry of the stationary phase. In combination with the remarkable column performance evident from the low theoretical plate heights observed under CEC conditions for all test solutes (3.5-7.5 microm in the flow rate range of 0.4-1.2 mm/s, corresponding to (130,000-300,000 plates per meter), the presented framework provides an attractive tool as the basis for the assessment of chromatographic selectivities in a miniaturized CEC screening of new selectors and chiral stationary phases (CSPs), respectively, from experimental CEC data and known CE mobilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号