首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
An elastic analysis of an internal crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane is studied, and asymmetrical dynamic fracture model of bridging fiber pull-out of unidirectional composite materials is presented for analyzing the distributions of stress and displacement with the internal asymmetrical crack under the loading conditions of an applied non-homogenous stress and the traction forces on crack faces yielded by the bridging fiber pull-out model. Thus the fiber failure is ascertained by maximum tensile stress, the fiber ruptures and hence the crack propagation should also appear in the modality of self-similarity. The formulation involves the development of a Riemann-Hilbert problem. Analytical solution of an asymmetrical propagation crack of unidirectional composite materials under the conditions of two increasing loads given is obtained, respectively. In terms of correlative material properties, the variable rule of dynamic stress intensity factor was depicted very well. After those analytical solutions were utilized by superposition theorem, the solutions of arbitrary complex problems could be gained.  相似文献   

2.
A dynamic model of bridging fiber pull-out of composite materials   总被引:3,自引:0,他引:3  
An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane is carried out. In this paper a dynamic model of bridging fiber pull-out is presented for analyzing the distributions stress and displacement of composite materials with the internal central crack under the loading conditions of an applied non-uniform stress and the traction forces on crack faces yielded by the fiber pull-out model. Thus the fiber failure is determined by maximum tensile stress, the fiber breaks and hence the crack propagation should occur in self-similar fashion. By reducing the dynamic model to the Keldysh–Sedov mixed boundary value problem, a straightforward and easy analytical solution can be attained. When the crack extends, its fibers continue to break. Analytical study on the crack extension under the action of an inhomogeneous point force Px/t, Pt is obtained for orthotropic anisotropic body, respectively; and it can be utilized to attain the concrete solutions of the model by the ways of superposition.  相似文献   

3.
An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane was performed. A dynamic model of bridging fiber pull-out of composite materials was presented. Resultingly the fiber failure is governed by maximum tensile stress, the fiber breaks and hence the crack extension should occur in self-similar fashion. By the methods of complex functions, the problem studied can be transformed into the dynamic model to the Reimann-Hilbert mixed boundary value problem, and a straightforward and easy analytical solution is presented. Analytical study on the crack propagation subjected to a ladder load and an instantaneous pulse loading is obtained respectively for orthotropic anisotropic body. By utilizing the solution, the concrete solutions of this model are attained by ways of superposition.  相似文献   

4.
在无限大正交各向异性体弹性平面上对复合材料桥纤维平行自由表面的内部中央裂纹提出了桥纤维拔出的动态裂纹模型。通过复变函数将其转化为Reimann-Hilbert混合边界值问题。求得了裂纹在坐标原点受载荷Px/t、Px2/t作用的解析解。利用这一解析解可通过迭加原理求得任意复杂问题的解。  相似文献   

5.
The residual strength of a cracked unidirectional fiver reinforced metal matrix composite is studied. We propose a bridging model based on the Dugdale strip yielding zones in the matrix ahead of the crack tips that accounts for ductile deformations of the matrix and fiber debonding and pull-out in the strip yielding zone. The bridging model is used to study the fracture of an anisotropic material and its residual strength is calculated numerically. The predicted results for a SiC/titanium composite agree well with the existing experimental data. It is found that a higher fiber bridging stress and a larger fiber pull-out length significantly contribute to the composite's residual strength. The composite's strength may be more notch-insensitive than the corresponding matrix material's strength depending on several factors such as fiber-matrix interface properties and the ratio of the matrix modulus to an ‘effective modulus’ of the composite.  相似文献   

6.
In order to evaluate the strength of fiber-reinforced composites, there is first the need to investigate the interfacial debonding and the pull-out of fibers in a fractured composite with intact fibers. This type of problem in crack bridging has been investigated by several authors based on different models and assumptions [1–7]. In this study, we will consider a three-dimensional model of a single fiber of finite length bonded by a finite cylindrical matrix with an initial crack existing in a portion of the interface. In the model, one end of the cylinder is so constrained that the axial component of displacement vanishes. A tensile stress is applied to the fiber at the other end. The aim is to determine the pull-out of the fiber and the critical condition for interfacial debonding. Both the fiber and the matrix are treated as elastic materials. Analysis is made based on a method using Papkovich-Neuber displacement potential functions for the problem of an elastic solid subjected to axisymmetrical boundary conditions. Solutions are found by means of the technique of trigonometrical series. Effects of initial misfit strains and frictional sliding between the fiber and the matrix over the interfacial crack are also included in the study.  相似文献   

7.
8.
复合材料桥连的断裂动力学模型   总被引:8,自引:0,他引:8  
复合材料产生裂纹后,其纤维处形成“桥连”,这是一个不可避免的现象。由于桥连问题很复杂.在数学方法的处理上有很大困难,至今人们研究大多是桥连的静力学问题.而对其动力学问题研究得很少。为了便于分析复合材料的问题,将桥连处用载荷代替,当裂纹高速扩展时.其纤维也连续地断裂。只有建立复合材料的桥连动力学模型,才能更好地研究复合材料的断裂动力学问题。通过复变函数论的方法,将所讨论的问题转化为Riemann—Hilbert问题。利用建立的动态模型和自相似方法,得到了正交异性体中扩展裂纹受运动的集中力P及阶跃载荷作用下位移、应力和动态应力强度因子的解析解,并通过叠加原理,最终求得了该模型的解。  相似文献   

9.
吕念春  程靳 《力学季刊》2002,23(4):504-508
复合材料产生裂纹后,其纤维处形成“桥连”,这是一个不可避免的现象。由于桥连问题很复杂,在数学方法的处理上有很大困难,至今人们研究的大多是桥连的静力学问题,而对其动力学问题研究得很少。只有建立复合材料的桥连动力学模型,才能更好地研究复合材料的断裂动力学问题。为了便于分析复合材料的问题,将桥连处用载荷代替,当裂纹高速扩展时,其纤维也连续地断裂。通过复变函数论的方法,将所讨论的问题转化为Riemann-Hilbet问题。利用建立的动态模型和自相似方法,得到了正交异性体中扩展裂纹受运动的集中力Px/t及均布载荷作用下位移、应力和动态应力强度因子的解析解,并通过迭加原理,最终求得了该模型的解。  相似文献   

10.
When a crack appears in composite materials, the fibrous system will form bridges, and the crack propagates asymmetrically as a rule. A dynamic model of an asymmetrical crack propagation is considered and investigated by applying the self-similar functions. The formulation involves the development of a Riemann–Hilbert problem. The analytical solution of an asymmetrical propagation crack of composite materials under the action of variable moving loads and unit-step moving loads is obtained.  相似文献   

11.
A variational method is developed for analyzing the matrix creep induced time-dependent change in fiber stress profiles in unidirectional composites. A functional of admissible profiles of fiber stress rate is presented by supposing a fiber broken in matrix as well as a fiber pulled out from matrix. The functional is shown to have the stationary function satisfying an incremental differential equation based on the shear lag assumption. Then, the stationary function is approximately determined by assuming bilinear profiles of fiber stress and a power law of matrix creep, leading to analytical solutions for the time-dependent change in fiber stress profiles. The solutions are verified on the basis of an energy balance equation and a finite difference computation. Moreover, it is shown that the solution for the fiber pull-out model agrees well with an experiment on a single carbon fiber/acrylic model composite if the initial slip at fiber/matrix interface is taken into account. In addition, the solution for the fiber breakage model is used for evaluating the characteristic time in long-term creep rupture of unidirectional composite.  相似文献   

12.
The three-dimensional problem of a periodic unidirectional composite with a penny-shaped crack traversing one of the fibers is analyzed by the continuum equations of elasticity. The solution of the crack problem is represented by a superposition of weighted unit normal displacement jump solutions, everyone of which forms a Green’s function. The Green’s functions for the unbounded periodic composite are obtained by the combined use of the representative cell method and the higher-order theory. The representative cell method, based on the triple discrete Fourier transform, allows the reduction of the problem of an infinite domain to a problem of a finite one in the transform space. This problem is solved by the higher-order theory according to which the transformed displacement vector is expressed by a second order expansion in terms of local coordinates, in conjunction with the equilibrium equations and the relevant boundary conditions. The actual elastic field is obtained by a numerical evaluation of the inverse transform. The accuracy of the suggested approach is verified by a comparison with the exact analytical solution for a penny-shaped crack embedded in a homogeneous medium. Results for a unidirectional composite with a broken fiber are given for various fiber volume fractions and fiber-to-matrix stiffness ratios. It is shown that for certain parameter combinations the use of the average stress in the fiber, as it is employed in the framework of the shear lag approach, for the prediction of composite’s strength, leads to an over estimation. To this end, the concept of “point stress concentration factor” is introduced to characterize the strength of the composite with a broken fiber. Several generalizations of the proposed approach are offered.  相似文献   

13.
《Wave Motion》1987,9(2):141-156
A continuum theory for transient wave propagation in three-dimensional composite materials is given. The derived model provides a set of governing equations for the prediction of dynamic response of elastic composites to impulsive loadings. Pulse propagation normal to the direction of layering in periodically bilaminated media, and normal to the fiber direction in unidirectional long-fiber composites are obtained as special cases. The dynamic response of the composite is determined solely from the materials properties of the constituents (assumed in general to be orthotropic) and their geometrical dimensions. The predicted propagating transient waves are checked with exact solutions for impacted laminated composites, and with measured data for a fiber-reinforced material. Applications are given for pulse propagation in particulate composites and in tri-othogonally fiber-reinforced materials.  相似文献   

14.
A fibrous composite beam with an edge crack is submitted to a cyclic bending moment and the crack bridging actions due to the fibers. Assuming a general elastic-linearly hardening crack bridging model for the fibers and a linear-elastic law for the matrix, the statically indeterminate bridging actions are obtained from compatibility conditions. The elastic and plastic shake-down phenomena are examined in terms of generalised cross-sectional quantities and, by employing a fatigue crack growth law, the mechanical behaviour up to failure is captured. Within the framework of the proposed fracture mechanics-based model, the cyclic crack bridging due to debonding at fiber–matrix interface of short fibers is analysed in depth. By means of some simplifying assumptions, such a phenomenon can be described by a linear isotropic tensile softening/compressive hardening law. Finally, numerical examples are presented for fibrous composite beams with randomly distributed short fibers.  相似文献   

15.
An analytical model is presented for a unidirectional composite with a matrix crack straddling across rubber-coated fiber reinforcements. An expression is derived for the energy released in matrix cracking. A penny-shaped matrix crack configuration is chosen as an example. With the aid of Hankel's transform, a linear integral equation is derived and solved numerically for the reinforcement stress and energy release in terms of a parameter λ that depends on the composite material and crack geometry. The maximum stress intensity factor for a matrix crack in the unidirectional composite increases monotonically with λ, attaining the largest value for a crack in a homogeneous matrix material.  相似文献   

16.
An approach for the coupled thermomechanical analysis of composite structures with bridged cracks is described. A crack bridging law is presented that accounts for breakdown of load as well as of heat transfer across the crack with increasing crack opening. The crack bridging law is implemented into a finite element framework as a cohesive zone model and is used for the investigation of unidirectional laminates under prescribed temperature gradients. The effects of crack bridging parameters on energy release rates, mode mixity and crack heat flux is discussed for boundary conditions which lead to crack opening either through bending deformation or delamination buckling.  相似文献   

17.
The plane static elastic problem of stress concentration in a unidirectional discrete infinite composite weakened by fiber breaks on a line normal to the reinforcement direction (an analog of the Griffith problem of elasticity theory) is considered. The composite is subjected to uniform stresses at infinity, and the crack edges are loaded symmetrically by the normal pressure. The problem reduces to constructing a polynomial with known values at the points of fiber breaks. The stress distribution along the line of breaks is obtained in the form of a fractional rational function of fiber number.  相似文献   

18.
共晶基陶瓷复合材料的断裂韧性   总被引:2,自引:0,他引:2  
应用细观力学方法研究了由具有随机尺寸和方位的棒体共晶体构成的共晶基陶瓷复合材料的断裂韧性.首先根据棒状共晶体的细观结构特性,考虑共晶体边界处的微观滑移确定共晶陶瓷复合材料的开裂应力,当外载荷达到开裂应力时,裂纹开始扩展.然后分析裂纹表面处的棒状共晶体桥联力使裂纹产生闭合效应,减小裂纹尖端的应力集中,建立棒状共晶体桥联增韧机制;再依据棒状共晶体拔出过程中摩擦力做功,建立棒状共晶体拔出增韧机制.最后在棒状共晶体的桥联与拔出增韧机制的基础上,得到了共晶基陶瓷复合材料断裂韧性的理论表达式.结果表明共晶基陶瓷复合材料的断裂韧性与棒状共晶体的长径比密切相关.  相似文献   

19.
Summary  An interface crack problem is investigated under various assumptions on an interface between two elastic materials. The interface is modeled by an additional third structure (thin elastic wedge of differing elastic properties) matching the bonded materials, or by introducing special boundary conditions on the crack line ahead. The main emphasis of the paper is placed on a comparison of the asymptotic expansion of the elastic solutions near the crack tip obtained for the different models. In particular, the behaviour of the stress singularity exponent and the generalized SIF are discussed. Numerical examples are presented. Received 16 August 2000; accepted for publication 26 May 2001  相似文献   

20.
The elastic crack interaction with internal defects, such as microcracks, voids and rigid inclusions, is investigated in this study for the purpose of analyzing crack propagation. The elastic stress field is obtained using linear theory of elasticity for isotropic materials. The cracks are modeled as pile-ups of edge dislocations resulting into a coupled set of integral equations, whose kernels are those of a dislocation in a medium with or without an inclusion or void. The numerical solution of these equations gives the stress intensity factors and the complete stress field in the given domain. The solution is valid for a general solid, however the propagation analysis is valid mostly for brittle materials. Among different propagation models the ones based on maximum circumferential stress and minimum strain energy density theories, are employed. A special emphasis is given to the estimation of the crack propagation direction that defines the direction of crack branching or kinking. Once a propagation direction is determined, an improved model dealing with kinked cracks must be employed to follow the propagation behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号