首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨丹  祝艳 《催化学报》2021,42(2):245-250,后插1-后插5
近年来,由有机配体保护的原子精确金属团簇在合成方面已取得了重要进展,其独特的原子结构对一些化学反应产生独特的催化效果.原子精确的团簇催化剂明显不同于纳米颗粒催化剂和单原子催化剂,是一种关联均相和多相的、原子数目确定、尺寸均一、结构精确的新型催化剂.从原子尺度上精确构筑团簇催化剂,探究亚纳米尺度的微观结构对催化性能的影响...  相似文献   

2.
We report for the first time that Pd nanocrystals can absorb H via a “single-phase pathway” when particles with a proper combination of shape and size are used. Specifically, when Pd icosahedral nanocrystals of 7- and 12-nm in size are exposed to H atoms, the H-saturated twin boundaries can divide each particle into 20 smaller single-crystal units in which the formation of phase boundaries is no longer favored. As such, absorption of H atoms is dominated by the single-phase pathway and one can readily obtain PdHx with anyx in the range of 0–0.7. When switched to Pd octahedral nanocrystals, the single-phase pathway is only observed for particles of 7 nm in size. We also establish that the H-absorption kinetics will be accelerated if there is a tensile strain in the nanocrystals due to the increase in lattice spacing. Besides the unique H-absorption behaviors, the PdHx (x=0–0.7) icosahedral nanocrystals show remarkable thermal and catalytic stability toward the formic acid oxidation due tothe decrease in chemical potential for H atoms in a Pd lattice under tensile strain.  相似文献   

3.
The structure and electronic structure of different high-symmetry surfaces of either quasicrystalline or approximant Al–Pd–Mn were studied by means of photoemission-based techniques such as X-ray photoelectron diffraction (XPD) and ultraviolet photoelectron spectroscopy. We find that the twofold (2f), 3f and 5f surfaces of icosahedral Al–Pd–Mn exhibit all the symmetry elements of the icosahedral non-crystallographic group. These XPD experiments can be modeled by single-scattering cluster calculations.

The bulk-terminated icosahedral or approximant surfaces are recovered after ion sputtering followed by annealing at T≈500–600 °C. A wealth of ordered surface phases (with different compositions) are found after sputtering and depending on the annealing temperature as, for example, a crystalline bcc multitwinned phase (for T<400 °C) or a stable decagonal quasicrystalline surface (for T>650 °C).

The icosahedral surfaces are characterised by a lowering of the density of states close to the Fermi edge, compatible with the opening of a pseudogap, as expected for a quasicrystal. The crystalline overlayers are characterised by a sharp Fermi edge, while the approximant and decagonal quasicrystalline surfaces also have a lowered density of states.  相似文献   


4.
Eight binary salts that pair triazolium(1+), imidazolium(1+), pyrimidinium(1+), or purinium(1+) cations with the icosahedral closo-dodecafluorododecaborate(2−) anion (B12F122−) were synthesized using open-air benchtop metathesis reactions in water or acetonitrile. The scale of the reactions varied from just milligrams to nearly one gram of the K2B12F12 starting material. Other reaction conditions, the scope of the reaction, and the solubilities for the new salts are discussed. Five [heterocyclium]2[B12F12] salts, which were obtained in yields ranging from 84% to 99%, displayed significantly higher densities than the corresponding previously reported analogous [heterocyclium]2[B12H12] and [heterocyclium][CB11H12] salts. A ninth high-density salt consisted of B12F122− paired with a complex Ag4(triazole)84+ cation. The structures of eight of the nine new compounds were determined by single-crystal X-ray diffraction analysis. The density of five [heterocyclium]2[B12F12] salts was found to increase approximately linearly as the distance between the five-membered-ring heterocyclium(1+) cation centroids decreased. This work demonstrates additional flexibility for the rational design of ionic structures with predictable properties, which will ultimately permit the tailoring of ingredient-response behavior.  相似文献   

5.
The adiabatic potential surface for icosahedral systems having three-, four- and five-fold degenerate orbital states interacting with five-fold degenerate vibrations (T-v,U-v andV-v problems) is investigated. It is shown that for theT-v andV-v Jahn-Teller cases the potential surface possesses respectively a two- or three-dimensional equipotential continuum of minima. For theU-v problem the potential surface contains 15 equivalent minima. The nature of the extremum points on the adiabatic potential surfaces is elucidated. In the linear approximation to theV-v problem in the minima points the lowest potential surface is double degenerate due to the accidental occurrence of axial symmetry.  相似文献   

6.
The splitting of the overtone levels of the T1u, Gu, and Hg vibrations in molecules with Ih symmetry has been calculated by using the perturbation theory. To do this it was necessary to establish beforehand the icosahedral potential, employing the usual procedure in crystal field theory. The total splitting, predicted by the group theory, is obtained when the anharmonicity up to the sixth power of the coordinates is taken into account. Expressions for the intensities of the infrared-active transitions of T1u vibrations are also proposed.
Das ikosaedrische Potential und seine Anwendung für die Untersuchung der Anharmonizität in den Obertönen der entarteten Schwingungen von Molekülen mit Symmetrie Ih
Zusammenfassung Die Aufspaltung der Obertöne der Schwingungen T1u, Gu und Hg in Molekülen mit Symmetrie Ih ist unter Verwendung der Störungstheorie berechnet worden. Dafür war es notwendig, das ikosaedrische Potential herzuleiten. Hierbei wurde das übliche Verfahren der Kristallfeld-Theorie angewandt. Die durch die Gruppentheorie vorhergesagte komplette Aufspaltung erhält man, wenn die Anharmonizität bis zur sechsten Potenz in den Koordinaten berücksichtigt wird. Es werden Ausdrücke für die Intensitäten der infrarot-aktiven Übergänge der Schwingungen T1u vorgeschlagen.
  相似文献   

7.
Developing highly efficient, cost-saving, and durable multifunctional electrocatalysts for oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) continues to be a significant challenge in the energy field. In this work, we decide to prepare an unusual multifunctional electrocatalyst, such as icosahedral palladium nanocrystals (PdNCs) encapsulating on N–MoO2–Mo2C half-hollow nanotube (HHNT) heterointerface, using an in-situ chemical reaction and following sonic probe irradiation method. All the experiments demonstrate that special defect-enriched heterointerfaces N–MoO2–Mo2C supported Pd nanocomposite can greatly improve the ORR activity (Eonset = 1.01 V and E1/2 = 0.90 V) with good stability, outstanding HER (η10 = 65 mV) and OER (η10 = 180 mV) performances than those of commercial precious electrocatalysts (Platinum on carbon [Pt/C] and ruthenium oxide [RuO2]). The overall water splitting electrolyzer fabricates by Pd/N–MoO2–Mo2C as both anode and cathode electrodes to achieve a current density of 10 Ma/cm2 at a cell voltage of 1.56 V, which surpasses the most recent reported electrocatalysts.  相似文献   

8.
Icosahedral boron-rich solids are materials containing boron-rich units in which atoms reside at an icosahedron's 12 vertices. These materials are known for their exceptional bonding and the unusual structures that result. This article describes how the unusual bonding generates other distinctive and useful effects. In particular, radiation-induced atomic vacancies and interstitials spontaneously recombine to produce the “self-healing” that underlies these materials’ extraordinary radiation tolerance. Furthermore, boron carbides, a group of icosahedral boron-rich solids, possess unusual electronic, magnetic and thermal properties. For example, the charge carriers, holes, localize as singlet pairs on icosahedra. The unusual origin of this localization is indicated by the absence of a concomitant photo-ionization. The thermally assisted hopping of singlet pairs between icosahedra produces Seebeck coefficients that are unexpectedly large and only weakly dependent on carrier concentration. These properties are exploited in devices: (1) long-lived high-power high-capacity beta-voltaic cells, (2) very high temperature thermoelectrics and (3) solid-state neutron detectors.  相似文献   

9.
It is demonstrated that for the group-subgroup hierarchy I * C 5 * , one may choose standard irreducible matrix representations and corresponding all-real sets of 3- symbols which obey a formalism just as elegant as the classical one for the 3-j symbols of the rotation double group. The 3- symbols are phase-fixed by the specification of basis functions (or, equivalently, subduction coefficients) generating them and based on functions first given by McLellan.Other icosahedral double-group hierarchies are also briefly discussed.  相似文献   

10.
Isomers of pure Fe13 and icosahedral Fe12X clusters are studied using the all-electron linear-combination-of-Gaussian-type-orbital (LCGTO) local-density-functional (LDF) methods that allow the spin and geometry of the cluster to be determined self-consistently. The Fe13 ground state is icosahedral. The icosahedral cluster also has the greatest magnetic moment because of increased symmetry-required orbital degeneracy for electrons of different spins. The central atom of the icosahedral iron cluster has been varied to optimize the spin of the cluster keeping the oribital contribution to the magnetic moment quenched. Varying the central atom under this constraint can alter the magnetic moment by more than 20%. Similar studies have begun on 55-atom icosahedral iron clusters.  相似文献   

11.
12.
钟煜  邱文元 《化学通报》2005,68(4):277-284
许多病毒具有二十面体结构。本文对已经发现的各种二十面体病毒进行了分类,分析了二十面体病毒衣壳的结构特征,阐述了二十面体病毒的结构蛋白。  相似文献   

13.
Much effort has gone into generating polyhedral noble metal nanostructures because of their superior electrocatalytic activities for fuel cells. Herein, we report uniform, high-yield icosahedral silver and gold nanoparticles by using a facile one-pot, seedless, water-based approach that incorporates polyvinyl pyrrolidone and ammonia. Electrocatalysis of the oxygen-reduction reaction was carried out in alkaline media to evaluate the performance of the icosahedral nanoparticles. They showed excellent stability and much higher electrocatalytic activity than the spherelike nanoparticles; they display a positive shift in reduction peak potential for O(2) of 0.14 and 0.05 V, while the reduction peak currents of the silver and gold icosahedra are 1.5- and 1.6-fold, respectively, better than the spherelike nanoparticles. More importantly, the icosahedral nanoparticles display electrocatalytic activities comparable with commercial Pt/C electrocatalysts. The facile preparation of icosahedral silver and gold nanoparticles and their superior performance in the oxygen reduction reaction render them attractive replacements for Pt as cathode electrocatalysts in alkaline fuel cells.  相似文献   

14.
Kuo  K. H. 《Structural chemistry》2002,13(3-4):221-230
Mackay introduced two important crystallographic concepts in a short paper published 40 years ago. One is the icosahedral shell structure (iss) consisting of concentric icosahedra displaying fivefold rotational symmetry. The number of atoms contained within these icosahedral shells and subshells agrees well with the magic numbers in rare gas clusters, (C60) N molecules, and some metal clusters determined by mass spectroscopy or simulated on energy considerations. The cluster of 55 atoms within the second icosahedral shell occurs frequently and has been called Mackay icosahedron, or simply MI, which occurs not only in various clusters, but also in intermetallic compounds and quasicrystals. The second concept is the hierarchic icosahedral structures caused by the presence of a stacking fault in the fcc packing of the successive triangular faces in the iss. For instance, a fault occurs after the ABC layers resulting an ABCB packing. This is, in fact, a hierarchic icosahedral structure of a core icosahedron connected to 12 outer icosahedra by vertex sharing, or an icosahedron of icosahedra (double MI. Contrary to Mackay's iss, a faulted hierarchic icosahedral shell is, in fact, a twinlike face capping of the underlying triangles; it is, therefore, called an anti-Mackay cluster. The hierarchic icosahedral structure in an Al-Mn-Pd icosahedral quasicrystal has a core of body-centered cube rather than an icosahedron and, therefore, is called a pseudo-Mackay cluster. The hierarchic icosahedral structures have been studied separately in the past in the fields of clusters, nanoparticles, intermetallic compounds, and quasicrystals, but the underlying geometry should be the same. In the following a unified geometrical analysis is presented.  相似文献   

15.
Reactions of bare and hydrogenated cobalt and nickel clusters with ammonia and with water are used to determine cluster geometrical structure. Saturation measurements determine the total number of ammonia binding sites on cluster surfaces. A pattern of minima in the number of such sites is found to correlate with the sequence of closed shells and subshells expected for icosahedral packing in the 50- to 120-atom size range (50- to 200-atom range for hydrogenated clusters). In many cases there are 12 sites at the minima, the number that would be expected for preferred ammonia binding sites on closed (sub)shells of icosahedral clusters. The equilibrium adsorption of a single water molecule provides a sensitive measure of changes in cluster-water binding energy. A pattern of binding energy maxima is found, once again correlating with icosahedral structure, but for clusters having one metal atom more than the closed (sub)shells. In general, hydrogenation enhances the patterns of minima and maxima. These observations are explained in terms of the expected nature of ammonia and water binding to icosahedral clusters.  相似文献   

16.
We predict the existence of two novel families of arsenic nanostructures: icosahedral cages and ring-shaped chains. Quantum chemical calculations on the cages, rings, and the experimentally known allotropes of arsenic suggest the nanostructures to be thermodynamically stable. The icosahedral cages are modifications of the gray allotrope of arsenic, while the ring-shaped chains are structurally related to the red allotrope of phosphorus. Comparisons between the analogous allotropes of arsenic and phosphorus show distinct differences. While phosphorus favors the ring-shaped chains over the icosahedral cages, large cages become favorable for arsenic. From the thermodynamical point of view, experimental preparation of the proposed families of arsenic nanostructures is expected to be viable.  相似文献   

17.
在(n=0、-1、-2、-3、-4)簇合物几何构型及稳定性研究的基础上,进一步对它的各种内含式和外 接式二十面体簇合物(X@B12H122-和XB12H122-,X=H0/+、Li0/+、He、Ne、Be0/2+、Na+、Mg2+)进行了优化和 计 算.发现在内含式结构X@ B12H122-中,当X=Li+、Be2+、Mg2+时,构型较稳定;在外接式结构中, XB12H122-(C3v)结构比XB12H122-(C2v)的结构稳定.通过IRC计算,确定XB12H122-(C2v)是X与B12H122-作用生成产物XB12H122-(C3v)的一种过渡态.  相似文献   

18.
There is not a wide consensus on the role played by the icosahedral short range order on the stability of undercooled simple metals. The scenario is even less clear for undercooled metals under external pressure. Classical molecular dynamics simulations are performed to explain experimental results recently obtained on liquid and undercooled liquid copper under pressure. The atomic configurations are characterized by a common neighbor analysis to reveal the icosahedral short range order and its relation with external pressure. External pressure increases the probability to find atomic bonds with icosahedral symmetry both in the liquid and in the undercooled copper.  相似文献   

19.
An icosahedral fullerene may be considered as a tessellation of the sphere specified by an ordered pair of integers, or as a tightly wound spiral of faces. Explicit analytical relations for interconverting the two representations are given, enabling the canonical spiral code to be constructed for an icosahedral fullerene of any size. Analogous relations hold for the octahedral square + hexagon polyhedra that have been mentioned as possible candidates for boron-nitride "fullerenes".  相似文献   

20.
Rapid solidification of Mg(90)Ca(10) from its liquid state is studied by means of an ab initio molecular dynamics technique, and its local structure is investigated by various analyzing methods. The liquid and amorphous states are found to have slightly different short range order even though the perfect and defective icosahedral bonding environments are major bonding elements of both liquid and amorphous states. Perfect icosahedrons with a small frequency exist in the liquid state, more develop during the cooling process and they become the leading building units in the glass state, indicating an icosahedral short range order in Mg(90)Ca(10) glass. Also the linked icosahedrons lead to an icosahedral medium range order. Furthermore, an ordered arrangement of some icosahedrons in the hexagonal symmetry is observed in the glass model, representing a nanoscale icosahedral quasicrystalline phase in Mg(90)Ca(10) glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号