首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陀螺动力系统可以导入哈密顿辛几何体系,在哈密顿陀螺系统的辛子空间迭代法的基础上提出了一种能够有效计算大型不正定哈密顿函数的陀螺系统本征值问题的算法.利用陀螺矩阵既为哈密顿矩阵而本征值又是纯虚数或零的特点,将对应哈密顿函数为负的本征值分离开来,构造出对应哈密顿函数全为正的本征值问题,利用陀螺系统的辛子空间迭代法计算出正定哈密顿矩阵的本征值,从而解决了大型不正定陀螺系统的本征值问题,算例证明,本征解收敛得很快.  相似文献   

2.
求解陀螺系统特征值问题的收缩二阶Lanczos方法   总被引:1,自引:1,他引:0  
孔艳花  戴华 《计算数学》2011,33(3):328-336
本文研究陀螺系统特征值问题的数值解法,利用反对称矩阵Lanczos算法,提出了求解陀螺系统特征值问题的二阶Lanczos方法.基于提出的陀螺系统特征值问题的非等价低秩收缩技术,给出了计算陀螺系统极端特征值的收缩二阶Lanczos方法.数值结果说明了算法的有效性.  相似文献   

3.
Derivatives of eigenvalues and eigenvectors with respect to parameters in symmetric quadratic eigenvalue problem are studied. The first and second order derivatives of eigenpairs are given. The derivatives are calculated in terms of the eigenvalues and eigenvectors of the quadratic eigenvalue problem, and the use of state space representation is avoided, hence the cost of computation is greatly reduced. The efficiency of the presented method is demonstrated by considering a spring-mass-damper system.  相似文献   

4.
It is commonplace in many application domains to utilize polynomial eigenvalue problems to model the behaviour of physical systems. Many techniques exist to compute solutions of these polynomial eigenvalue problems. One of the most frequently used techniques is linearization, in which the polynomial eigenvalue problem is turned into an equivalent linear eigenvalue problem with the same eigenvalues, and with easily recoverable eigenvectors. The eigenvalues and eigenvectors of the linearization are usually computed using a backward stable solver such as the QZ algorithm. Such backward stable algorithms ensure that the computed eigenvalues and eigenvectors of the linearization are exactly those of a nearby linear pencil, where the perturbations are bounded in terms of the machine precision and the norms of the matrices defining the linearization. Although we have solved a nearby linear eigenvalue problem, we are not certain that our computed solution is in fact the exact solution of a nearby polynomial eigenvalue problem. Here, we perform a backward error analysis for the solution of a specific linearization for polynomials expressed in the monomial basis. We use a suitable one-sided factorization of the linearization that allows us to map generic perturbations of the linearization onto structured perturbations of the polynomial coefficients. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
实对称五对角矩阵逆特征值问题   总被引:11,自引:1,他引:10  
1 引 言 对于n阶实对称矩阵A=(aij),r是一个正整数,且1≤r≤n-1,当|i-j|>r时,aij=0(i,j=1,2,…,n),至少有一个i使得ai,i+r≠0,则称矩阵A是带宽为2r+1的实对称带状矩阵.特别地,当r=1时,称A为实对称三对角矩阵;当r=2时,称A为实对称五对角矩阵. 实对称带状矩阵逆特征值问题应用十分广泛,这类问题不仅来自微分方程逆特征值问  相似文献   

6.
We discuss the eigenvalue problem for general and structured matrix polynomials which may be singular and may have eigenvalues at infinity. We derive condensed forms that allow (partial) deflation of the infinite eigenvalue and singular structure of the matrix polynomial. The remaining reduced order staircase form leads to new types of linearizations which determine the finite eigenvalues and corresponding eigenvectors. The new linearizations also simplify the construction of structure preserving linearizations.  相似文献   

7.
We consider matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. One of the most fundamental differences from the linear case is that distinct eigenvalues may have linearly dependent eigenvectors or even share the same eigenvector. This has been a severe hindrance in the development of general numerical schemes for computing several eigenvalues of a nonlinear eigenvalue problem, either simultaneously or subsequently. The purpose of this work is to show that the concept of invariant pairs offers a way of representing eigenvalues and eigenvectors that is insensitive to this phenomenon. To demonstrate the use of this concept in the development of numerical methods, we have developed a novel block Newton method for computing such invariant pairs. Algorithmic aspects of this method are considered and a few academic examples demonstrate its viability.  相似文献   

8.
周星月  戴华 《计算数学》2012,34(4):341-350
本文研究陀螺系统特征值问题的Jacobi-Davidson方法. 利用陀螺系统的结构性质,给出了求解Jacobi-Davidson方法中校正方程的有效方法. 基于非等价低秩收缩技术,给出了计算陀螺系统一些特征值的收缩Jacobi-Davidson方法. 数值结果表明本文所给算法是有效的.  相似文献   

9.
We propose a numerical method for computing all eigenvalues (and the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that lie within a given contour in the complex plane. The method uses complex integrals of the resolvent operator, applied to at least k column vectors, where k is the number of eigenvalues inside the contour. The theorem of Keldysh is employed to show that the original nonlinear eigenvalue problem reduces to a linear eigenvalue problem of dimension k. No initial approximations of eigenvalues and eigenvectors are needed. The method is particularly suitable for moderately large eigenvalue problems where k is much smaller than the matrix dimension. We also give an extension of the method to the case where k is larger than the matrix dimension. The quadrature errors caused by the trapezoid sum are discussed for the case of analytic closed contours. Using well known techniques it is shown that the error decays exponentially with an exponent given by the product of the number of quadrature points and the minimal distance of the eigenvalues to the contour.  相似文献   

10.
We develop a nonlinear spectral graph theory, in which the Laplace operator is replaced by the 1 ? Laplacian Δ1. The eigenvalue problem is to solve a nonlinear system involving a set valued function. In the study, we investigate the structure of the solutions, the minimax characterization of eigenvalues, the multiplicity theorem, etc. The eigenvalues as well as the eigenvectors are computed for several elementary graphs. The graphic feature of eigenvalues are also studied. In particular, Cheeger's constant, which has only some upper and lower bounds in linear spectral theory, equals to the first nonzero Δ1 eigenvalue for connected graphs.  相似文献   

11.
Shinya Miyajima  Takeshi Ogita  Shin'ichi Oishi 《PAMM》2007,7(1):2020061-2020062
A fast method for enclosing all eigenpairs in symmetric positive definite generalized eigenvalue problem is proposed. Firstly theorems on verifying all eigenvalues are presented. Next a theorem on verifying all eigenvectors is presented. The proposed method is developed based on these theorems. Numerical results are presented showing the efficiency of the proposed method. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
研究L^p(1相似文献   

13.
The eigenvalues of a fourth order, generalized eigenvalue problem in one dimension, with non-smooth coefficients are approximated by a finite element method, introduced in an earlier work by the author and A. Lutoborski, in the context of a similar source problem with non-smooth coefficients. Error estimates for the approximate eigenvalues and eigenvectors are obtained, showing a better performance of this method, when applied to eigenvalue approximation, compared to a standard finite element method with arbitrary mesh.  相似文献   

14.
We consider the eigenvalues and eigenvectors of finite, low rank perturbations of random matrices. Specifically, we prove almost sure convergence of the extreme eigenvalues and appropriate projections of the corresponding eigenvectors of the perturbed matrix for additive and multiplicative perturbation models.The limiting non-random value is shown to depend explicitly on the limiting eigenvalue distribution of the unperturbed random matrix and the assumed perturbation model via integral transforms that correspond to very well-known objects in free probability theory that linearize non-commutative free additive and multiplicative convolution. Furthermore, we uncover a phase transition phenomenon whereby the large matrix limit of the extreme eigenvalues of the perturbed matrix differs from that of the original matrix if and only if the eigenvalues of the perturbing matrix are above a certain critical threshold. Square root decay of the eigenvalue density at the edge is sufficient to ensure that this threshold is finite. This critical threshold is intimately related to the same aforementioned integral transforms and our proof techniques bring this connection and the origin of the phase transition into focus. Consequently, our results extend the class of ‘spiked’ random matrix models about which such predictions (called the BBP phase transition) can be made well beyond the Wigner, Wishart and Jacobi random ensembles found in the literature. We examine the impact of this eigenvalue phase transition on the associated eigenvectors and observe an analogous phase transition in the eigenvectors. Various extensions of our results to the problem of non-extreme eigenvalues are discussed.  相似文献   

15.
On the modification of an eigenvalue problem that preserves an eigenspace   总被引:1,自引:0,他引:1  
Eigenvalue problems arise in many application areas ranging from computational fluid dynamics to information retrieval. In these fields we are often interested in only a few eigenvalues and corresponding eigenvectors of a sparse matrix. In this paper, we comment on the modifications of the eigenvalue problem that can simplify the computation of those eigenpairs. These transformations allow us to avoid difficulties associated with non-Hermitian eigenvalue problems, such as the lack of reliable non-Hermitian eigenvalue solvers, by mapping them into generalized Hermitian eigenvalue problems. Also, they allow us to expose and explore parallelism. They require knowledge of a selected eigenvalue and preserve its eigenspace. The positive definiteness of the Hermitian part is inherited by the matrices in the generalized Hermitian eigenvalue problem. The position of the selected eigenspace in the ordering of the eigenvalues is also preserved under certain conditions. The effect of using approximate eigenvalues in the transformation is analyzed and numerical experiments are presented.  相似文献   

16.
An iterative method is proposed to compute partial derivatives of eigenvectors of quadratic eigenvalue problems with respect to system parameters. Convergence theory of the proposed method is established. Numerical experiments demonstrate that the proposed method can be used efficiently for partial derivatives of eigenvectors corresponding to dominant eigenvalues.  相似文献   

17.
连续时间LQ控制主要本征对的算法   总被引:16,自引:1,他引:15  
本文首先提出了离散时间LQ控制的本征值方程当△t→0时怎样退化成为连续时间LQ控制的本征值方程.在建立了分离出的n阶连续时间的本征值方程,并保证了其本征值必定都在左半平面后,本文提出计算其最靠近于虚轴的若干个本征对,可以通过Ae=eA的矩阵变换.Ae的本征值全在单位圆之内.本征向量不变,至于本征值则只要做一次对数运算就可以求得原阵的本征值.Ae阵的最接近于单位圆的若干个本征对的算法,可以通过共轭子空间迭代解解决之.  相似文献   

18.
Eigenvectors and eigenvalues of discrete Laplacians are often used for manifold learning and nonlinear dimensionality reduction. Graph Laplacian is one widely used discrete laplacian on point cloud. It was previously proved by Belkin and Niyogithat the eigenvectors and eigenvalues of the graph Laplacian converge to the eigenfunctions and eigenvalues of the Laplace-Beltrami operator of the manifold in the limit of infinitely many data points sampled independently from the uniform distribution over the manifold. Recently, we introduced Point Integral method (PIM) to solve elliptic equations and corresponding eigenvalue problem on point clouds. In this paper, we prove that the eigenvectors and eigenvalues obtained by PIM converge in the limit of infinitely many random samples. Moreover, estimation of the convergence rate is also given.  相似文献   

19.
One crucial step of the solution of large-scale generalized eigenvalue problems with iterative subspace methods, e.g. Arnoldi, Jacobi-Davidson, is a projection of the original large-scale problem onto a low dimensional subspaces. Here we investigate two-sided methods, where approximate eigenvalues together with their right and left eigenvectors of the full-size problem are extracted from the resulting small eigenproblem. The two-sided Ritz-Galerkin projection can be seen as the most basic form of this approach. It usually provides a good convergence towards the extremal eigenvalues of the spectrum. For improving the convergence towards interior eigenvalues, we investigate two approaches based on harmonic subspace extractions for the generalized eigenvalue problem. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We show that, in the graph spectrum of the normalized graph Laplacian on trees, the eigenvalue 1 and eigenvalues near 1 are strongly related to minimum vertex covers.In particular, for the eigenvalue 1, its multiplicity is related to the size of a minimum vertex cover, and zero entries of its eigenvectors correspond to vertices in minimum vertex covers; while for eigenvalues near 1, their distance to 1 can be estimated from minimum vertex covers; and for the largest eigenvalue smaller than 1, the sign graphs of its eigenvectors take vertices in a minimum vertex cover as representatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号