首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
To model the uncertainty in the secondary possibility distributions, this paper develops a new method for handling interval-valued fuzzy variables with variable lower and upper possibility distributions. For a parametric interval-valued fuzzy variable, we define its lower selection variable, upper selection variable and lambda selection variable. The three selection variables are characterized by variable possibility distributions, and their numerical characteristics like expected values and n-th moments are important indices in practical optimization and decision-making problems. Under this consideration, we establish some useful analytical expressions of the expected values and n-th moments for the lambda selections of parametric interval-valued trapezoidal, normal and Erlang fuzzy variables. Furthermore, we focus on the arithmetic about the sums of common parametric interval-valued fuzzy variables. Finally, we apply the proposed optimization indices to a quantitative finance problem, where the second moment is used to measure the risk of a portfolio.  相似文献   

2.
A type-2 fuzzy variable is a map from a fuzzy possibility space to the real number space; it is an appropriate tool for describing type-2 fuzziness. This paper first presents three kinds of critical values (CVs) for a regular fuzzy variable (RFV), and proposes three novel methods of reduction for a type-2 fuzzy variable. Secondly, this paper applies the reduction methods to data envelopment analysis (DEA) models with type-2 fuzzy inputs and outputs, and develops a new class of generalized credibility DEA models. According to the properties of generalized credibility, when the inputs and outputs are mutually independent type-2 triangular fuzzy variables, we can turn the proposed fuzzy DEA model into its equivalent parametric programming problem, in which the parameters can be used to characterize the degree of uncertainty about type-2 fuzziness. For any given parameters, the parametric programming model becomes a linear programming one that can be solved using standard optimization solvers. Finally, one numerical example is provided to illustrate the modeling idea and the efficiency of the proposed DEA model.  相似文献   

3.
The p-hub center problem is to locate p hubs and to allocate non-hub nodes to hub nodes such that the maximum travel time (or distance) between any origin–destination pair is minimized. We address the p-hub center allocation problem, a subproblem of the location problem, where hub locations are given. We present complexity results and IP formulations for several versions of the problem. We establish that some special cases are polynomially solvable.  相似文献   

4.
In this paper we present an efficient approach for solving single allocation p-hub problems with two or three hubs. Two different variants of the problem are considered: the uncapacitated single allocation p-hub median problem and the p-hub allocation problem. We solve these problems using new mixed integer linear programming formulations that require fewer variables than those formerly used in the literature. The problems that we solve here are the largest single allocation problems ever solved. The numerical results presented here will demonstrate the superior performance of our mixed integer linear programs over traditional approaches for large problems. Finally we present the first mixed integer linear program for solving single allocation hub location problems that requires only O(n2) variables and O(n2) constraints that is valid for any number of hubs.  相似文献   

5.
In this paper, we study allocation strategies and their effects on total routing costs in hub networks. Given a set of nodes with pairwise traffic demands, the p-hub median problem is the problem of choosing p nodes as hub locations and routing traffic through these hubs at minimum cost. This problem has two versions; in single allocation problems, each node can send and receive traffic through a single hub, whereas in multiple allocation problems, there is no such restriction and a node may send and receive its traffic through all p hubs. This results in high fixed costs and complicated networks. In this study, we introduce the r-allocation p-hub median problem, where each node can be connected to at most r hubs. This new problem generalizes the two versions of the p-hub median problem. We derive mixed-integer programming formulations for this problem and perform a computational study using well-known datasets. For these datasets, we conclude that single allocation solutions are considerably more expensive than multiple allocation solutions, but significant savings can be achieved by allowing nodes to be allocated to two or three hubs rather than one. We also present models for variations of this problem with service quality considerations, flow thresholds, and non-stop service.  相似文献   

6.
The stochastic uncapacitated single allocation p-hub center problem is an extension of the deterministic version which aims to minimize the longest origin-destination path in a hub and spoke network. Considering the stochastic nature of travel times on links is important when designing a network to guarantee the quality of service measured by a maximum delivery time for a proportion of all deliveries. We propose an efficient reformulation for a stochastic p-hub center problem and develop exact solution approaches based on variable reduction and a separation algorithm. We report numerical results to show effectiveness of our new reformulations and approaches by finding global solutions of small-medium sized problems. The combination of model reformulation and a separation algorithm is particularly noteworthy in terms of computational speed.  相似文献   

7.
This paper develops a robust method to describe fuzzy returns by employing parametric possibility distributions. The parametric possibility distributions are obtained by equivalent value (EV) reduction methods. For common type-2 triangular and trapezoidal fuzzy variables, their reduced fuzzy variables are studied in the current development. The parametric possibility distributions of reduced fuzzy variables are first derived, then the second moment formulas for the reduced fuzzy variables are established. Taking the second moment as a new risk measure, the reward-risk and risk-reward models are developed to optimize fuzzy portfolio selection problems. The mathematical properties of the proposed optimization models are analyzed, including the analytical representations for the second moments of linear combinations of reduced fuzzy variables as well as the convexity of second moments with respect to decision vectors. On the basis of the analytical representations for the second moments, the reward-risk and risk-reward models can be turned into their equivalent parametric quadratic convex programming problems, which can be solved by conventional solution methods or general-purpose software. Finally, some numerical experiments are performed to demonstrate the new modeling ideas and the efficiency of solution method.  相似文献   

8.
The p-hub median problem is to determine the optimal location for p hubs and assign the remaining nodes to hubs so as to minimize the total transportation costs. Under the carbon cap-and-trade policy, we study this problem by addressing the uncertain carbon emissions from the transportation, where the probability distributions of the uncertain carbon emissions are only partially available. A novel distributionally robust optimization model with the ambiguous chance constraint is developed for the uncapacitated single allocation p-hub median problem. The proposed distributionally robust optimization problem is a semi-infinite chance-constrained optimization model, which is computationally intractable for general ambiguity sets. To solve this hard optimization model, we discuss the safe approximation to the ambiguous chance constraint in the following two types of ambiguity sets. The first ambiguity set includes the probability distributions with the bounded perturbations with zero means. In this case, we can turn the ambiguous chance constraint into its computable form based on tractable approximation method. The second ambiguity set is the family of Gaussian perturbations with partial knowledge of expectations and variances. Under this situation, we obtain the deterministic equivalent form of the ambiguous chance constraint. Finally, we validate the proposed optimization model via a case study from Southeast Asia and CAB data set. The numerical experiments indicate that the optimal solutions depend heavily on the distribution information of carbon emissions. In addition, the comparison with the classical robust optimization method shows that the proposed distributionally robust optimization method can avoid over-conservative solutions by incorporating partial probability distribution information. Compared with the stochastic optimization method, the proposed method pays a small price to depict the uncertainty of probability distribution. Compared with the deterministic model, the proposed method generates the new robust optimal solution under uncertain carbon emissions.  相似文献   

9.
Hub and spoke networks are used to switch and transfer commodities between terminal nodes in distribution systems at minimum cost and/or time. The p-hub center allocation problem is to minimize maximum travel time in networks by locating p hubs from a set of candidate hub locations and allocating demand and supply nodes to hubs. The capacities of the hubs are given. In previous studies, authors usually considered only quantitative parameters such as cost and time to find the optimum location. But it seems not to be sufficient and often the critical role of qualitative parameters like quality of service, zone traffic, environmental issues, capability for development in the future and etc. that are critical for decision makers (DMs), have not been incorporated into models. In many real world situations qualitative parameters are as much important as quantitative ones. We present a hybrid approach to the p-hub center problem in which the location of hub facilities is determined by both parameters simultaneously. Dealing with qualitative and uncertain data, Fuzzy systems are used to cope with these conditions and they are used as the basis of this work. We use fuzzy VIKOR to model a hybrid solution to the hub location problem. Results are used by a genetic algorithm solution to successfully solve a number of problem instances. Furthermore, this method can be used to take into account more desired quantitative variables other than cost and time, like future market and potential customers easily.  相似文献   

10.
《Optimization》2012,61(6):855-869
The aim of this paper is to study the continuous dependence of the feasible set of a disjunctive semi-infinite linear optimization problem on all involved parameters (matrix and right-hand side). The feasible set of such an optimization problem is the union of (a. possible infinite number of) convex sets, which each is described by a finite or an infinite number of strict and non-strict linear inequalities. We derive necessary and sufficient conditions for the upper- and lower-semi-continuity, and the closedness of the feasible-set-mapping Z Especially, the compactness of the boundary of the feasible set and the closedness of Z are equivalent to the upper-semi-continuity of Zwhile the lower semi-continuity of Z is equivalent to a certain constraint qualification. This constraint qualification is a strengthened kind of Slater condition, rrom tuese investigations, we derive known results in parametric semi-infinite optimization and parametric integer programming.  相似文献   

11.
This paper proposes a parametric programming approach to analyze the fuzzy maximum total return in the continuous knapsack problem with fuzzy objective weights, in that the membership function of the maximum total return is constructed. The idea is based on Zadeh’s extension principle, α-cut representation, and the duality theorem of linear programming. A pair of linear programs parameterized by possibility level α is formulated to calculate the lower and upper bounds of the fuzzy maximum total return at α, through which the membership function of the maximum total return is constructed. To demonstrate the validity of the proposed procedure, an example studied by the previous studies is investigated successfully. Since the fuzzy maximum total return is completely expressed by a membership function rather than by a crisp value reported in previous studies, the fuzziness of object weights is conserved completely, and more information is provided for making decisions in real-world resource allocation applications. The generalization of the proposed approach for other types of knapsack problems is also straightforward.  相似文献   

12.
Global optimization of mixed-integer bilevel programming problems   总被引:1,自引:0,他引:1  
Two approaches that solve the mixed-integer nonlinear bilevel programming problem to global optimality are introduced. The first addresses problems mixed-integer nonlinear in outer variables and C2-nonlinear in inner variables. The second adresses problems with general mixed-integer nonlinear functions in outer level. Inner level functions may be mixed-integer nonlinear in outer variables, linear, polynomial, or multilinear in inner integer variables, and linear in inner continuous variables. This second approach is based on reformulating the mixed-integer inner problem as continuous via its vertex polyheral convex hull representation and solving the resulting nonlinear bilevel optimization problem by a novel deterministic global optimization framework. Computational studies illustrate proposed approaches.  相似文献   

13.
The main objective of this work is to put forward chance constrained mixed-integer nonlinear stochastic and fuzzy programming models for refinery short-term crude oil scheduling problem under demands uncertainty of distillation units. The scheduling problem studied has characteristics of discrete events and continuous events coexistence, multistage, multiproduct, nonlinear, uncertainty and large scale. At first, the two models are transformed into their equivalent stochastic and fuzzy mixed-integer linear programming (MILP) models by using the method of Quesada and Grossmann [I. Quesada, I E. Grossmann, Global optimization of bilinear process networks with multicomponent flows, Comput. Chem. Eng. 19 (12) (1995) 1219–1242], respectively. After that, the stochastic equivalent model is converted into its deterministic MILP model through probabilistic theory. The fuzzy equivalent model is transformed into its crisp MILP model relies on the fuzzy theory presented by Liu and Iwamura [B.D. Liu, K. Iwamura, Chance constrained programming with fuzzy parameters, Fuzzy Sets Syst. 94 (2) (1998) 227–237] for the first time in this area. Finally, the two crisp MILP models are solved in LINGO 8.0 based on scheduling time discretization. A case study which has 267 continuous variables, 68 binary variables and 320 constraints is effectively solved with the solution approaches proposed.  相似文献   

14.
The uncapacitated multiple allocation p-hub center problem (UMApHCP) consists of choosing p hub locations from a set of nodes with pairwise traffic demands in order to route the traffic between the origin-destination pairs such that the maximum cost between origin-destination pairs is minimum. It is assumed that transportation between non-hub nodes is possible only via chosen hub nodes. In this paper we propose a basic variable neighborhood search (VNS) heuristic for solving this NP hard problem. In addition we apply two mathematical formulations of the UMApHCP in order to detect limitations of the current state-of-the-art solver used for this problem. The heuristics are tested on benchmark instances for p-hub problems. The obtained results reveal the superiority of the proposed basic VNS over the state-of-the-art as well as over a multi-start local search heuristic developed by us in this paper.  相似文献   

15.
We introduce a new method of constructing approximation algorithms for combinatorial optimization problems using semidefinite programming. It consists of expressing each combinatorial object in the original problem as a constellation of vectors in the semidefinite program. When we apply this technique to systems of linear equations mod p with at most two variables in each equation, we can show that the problem is approximable within (1 − κ(p))p, where κ(p) > 0 for all p. Using standard techniques, we also show that it is NP-hard to approximate the problem within a constant ratio, independent of p.  相似文献   

16.
基于可信性理论,研究了多受灾点、多出救点、多物资的应急设备选址和物资预置问题.考虑到运输费用、出救点的供应量、受灾点的需求量和道路容量的不确定性,用模糊变量来刻画,建立了模糊环境下应急物资预置的可信性优化模型以最小化期望总费用.当模型中的模糊变量相互独立且服从三角分布时,推导了总费用目标及服务质量和弧容量约束的解析表达式,从而将原模型转化为等价的确定模型.鉴于等价模型是一个混合整数规划,可采用Lingo软件编程求解.最后,数值算例演示所提建模思想.实验结果说明了所建模型的有效性.  相似文献   

17.
We study a class of mixed-integer programs for solving linear programs with joint probabilistic constraints from random right-hand side vectors with finite distributions. We present greedy and dual heuristic algorithms that construct and solve a sequence of linear programs. We provide optimality gaps for our heuristic solutions via the linear programming relaxation of the extended mixed-integer formulation of Luedtke et al. (2010) [13] as well as via lower bounds produced by their cutting plane method. While we demonstrate through an extensive computational study the effectiveness and scalability of our heuristics, we also prove that the theoretical worst-case solution quality for these algorithms is arbitrarily far from optimal. Our computational study compares our heuristics against both the extended mixed-integer programming formulation and the cutting plane method of Luedtke et al. (2010) [13]. Our heuristics efficiently and consistently produce solutions with small optimality gaps, while for larger instances the extended formulation becomes intractable and the optimality gaps from the cutting plane method increase to over 5%.  相似文献   

18.
In this paper, we consider the linear complementarity problem (LCP) and present a global optimization algorithm based on an application of the reformulation-linearization technique (RLT). The matrix M associated with the LCP is not assumed to possess any special structure. In this approach, the LCP is formulated first as a mixed-integer 0–1 bilinear programming problem. The RLT scheme is then used to derive a new equivalent mixed-integer linear programming formulation of the LCP. An implicit enumeration scheme is developed that uses Lagrangian relaxation, strongest surrogate and strengthened cutting planes, and a heuristic, designed to exploit the strength of the resulting linearization. Computational experience on various test problems is presented.  相似文献   

19.
This article deals with the uncapacitated multiple allocation p-hub median problem, where p facilities (hubs) must be located among n available sites in order to minimize the transportation cost of sending a product between all pairs of sites. Each path between an origin and a destination can traverse any pair of hubs.  相似文献   

20.
The transportation problem with fuzzy supply values of the deliverers and with fuzzy demand values of the receivers is analysed. For the solution of the problem the technique of parametric programming is used. This makes it possible to obtain not only the maximizing solution (according to the Bellman-Zadeh criterion) but also other alternatives close to the optimal solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号