首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an investigation regarding poly(vinyl alcohol)/zirconium acetate (organic–inorganic) (PVA/Zrace) nanofibers prepared by electrospinning which could be used as a precursor for fabricating ceramic metal oxide nanofibers. The effect of some processing variables, including polymer solution concentration, tip to collector distance and applied voltage of electrospinning, and the amount of Zrace and their interactions, on the diameter of the nanofibers were studied. Taguchi experimental design and a statistical analysis (ANOVA) were employed and the relationship between experimental conditions and yield levels determined. It was concluded that to obtain a narrow diameter distribution as well as maximum fiber fineness, a polymer concentration of 10 wt%, tip to collector distance of 18 cm and applied voltage of 20 kV variables were the optimum. Furthermore, it was also concluded that the ratio of Zrace (6 g) to PVA solution (10% wt) played an important role for achieving the minimum fiber diameter. Under these optimum conditions, the diameters of the electrospun composite fibers ranged from 86 nm to 381 nm with a diameter average of 193 nm. The experiments were done with Qualitek-4 software with “smaller is better” as the quality characteristics. The optimized conditions showed an improvement in the fibers diameter distribution and the average fibers diameter showed good resemblance with the result predicted using the Taguchi method and the Qualitek-4 software. The ANOVA results showed that all factors had significant effects on the fibers diameter and distribution, but the effect of PVA concentration and zirconium acetate were more significant than the other factors.  相似文献   

2.
Polyacrylonitrile (PAN)- and polymethylmethacrylate (PMMA)-blended nanofibers produced using electrospinning and mat morphology were studied. The response surface method was exploited to optimize the diameter and its standard deviation of electrospun PAN/PMMA non-woven membranes. The diameter and its standard deviation were related to the solution concentration, applied voltage, and PMMA composition. The morphology of nanofibers was studied by means of field emission scanning electron microscopy. The importance of parameters and their interactions was investigated through the analysis of variance. The nanofibers' diameter increased with solution concentration and decreased with applied voltage. The data showed that the diameter of nanofibers decreased up to 50% with PMMA composition, and then increased with further increase of PMMA composition. Some important interactions between the parameters were detected.  相似文献   

3.
Development of high efficiency nanofilters made of nanofibers   总被引:7,自引:0,他引:7  
Electrospinning is a fabrication process that uses an electric field to control the deposition of polymer fibers onto a target substrate. This electrostatic processing strategy can be used to fabricate fibrous polymer mats composed of fiber diameters ranging from several microns down to 100 nm or less. In this study, optimized conditions to produce nanofibers using Nylon 6 are investigated and the Nylon 6 nanofilters using nanofibers of 80–200 nm in diameter are designed and evaluated the filtration efficiency and pressure drop across the filter. When the Nylon 6 concentration is 15 wt.%, electrospun fibers have an average diameter of 80 nm, but there are many beads, and the concentration increases to 24 wt.%, the fiber diameter gradually thickens to 200 nm, but there are not any beads. When the spinning distance is small, the thinner nanofibers are produced and the more fibers are collected on the grounded electrode. The filtration efficiency of Nylon 6 nanofilters is 99.993% superior to the commercialized HEPA filter at the face velocity of 5 cm/s using 0.3 μm test particles. Even though the high pressure drops across the nanofilter, they show the potential to have the application of HEPA and ULPA grade high efficiency filter.  相似文献   

4.
In the present study, the formation of high aspect ratio nanofibers in polyamide-6 was investigated as a function of applied voltage ranging from 15 to 25 kV using electrospinning technique. All other experimental parameters were kept constant. The electrospun polyamide-6 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). FE-SEM images of polyamide-6 nanofibers showed that the diameter of the electrospun fiber was decreased with increasing applied voltage. At the critical applied voltage, the polymer solution was completely ionized to form the dense high aspect ratio nanofibers in between the main nanofibers. The diameter of the polyamide-6 nanofibers was observed to be in the range of 75-110 nm, whereas the high aspect ratio structures consisted of regularly distributed very fine nanofibers with diameters of about 9-28 nm. Trends in fiber diameter and diameter distribution were discussed for the high aspect ratio nanofibers. TEM results revealed that the formation of double layers in polyamide-6 nanofibers and then split-up into ultrafine fibers. The electrically induced double layer in combination with the polyelectrolytic nature of solution is proposed as the suitable mechanisms for the formation of high aspect ratio nanofibers in polyamide-6.  相似文献   

5.
Electrospinning is a versatile process for drawing fibers of diverse materials including polymers, ceramics, and composites. We demonstrate here its application in the synthesis of complex ceramic oxide materials. The phase formation and morphology of BaTiO3 nanofibers synthesized via electrospinning is investigated as a function of heat treatment conditions. Fully crystallized BaTiO3 nanofibers with the perovskite structure are obtained after annealing at 750 °C and show an average grain size of about 30 nm. Tetragonal crystal structure of the fibers is indicated by XRD peak splitting (calculated c/a ratio=1.007), and confirmed by Raman spectroscopy. Furthermore, the advancement in heat treatment of the electrospun fibers yields single crystalline BaTiO3 nanofibers with 50 nm in diameter and lengths up to 1 μm.  相似文献   

6.
Polyacrylonitrile (PAN)/β-cyclodextrin (β-CD) composite nanofibrous membranes immobilized with nano-titanium dioxide (TiO2) and graphene oxide (GO) were prepared by electrospinning and ultrasonic-assisted electrospinning. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) confirmed that TiO2 and GO were more evenly dispersed on the surface and inside of the nanofibers after 45 min of ultrasonic treatment. Adding TiO2 and GO reduced the fiber diameter; the minimum fiber diameter was 84.66 ± 40.58 nm when the mass ratio of TiO2-to-GO was 8:2 (PAN/β-CD nanofibrous membranes was 191.10 ± 45.66 nm). Using the anionic dye methyl orange (MO) and the cationic dye methylene blue (MB) as pollutant models, the photocatalytic activity of the nanofibrous membrane under natural sunlight was evaluated. It was found that PAN/β-CD/TiO2/GO composite nanofibrous membrane with an 8:2 mass ratio of TiO2-to-GO exhibited the best degradation efficiency for the dyes. The degradation efficiency for MB and MO were 93.52 ± 1.83% and 90.92 ± 1.52%, respectively. Meanwhile, the PAN/β-CD/TiO2/GO composite nanofibrous membrane also displayed good antibacterial properties and the degradation efficiency for MB and MO remained above 80% after 3 cycles. In general, the PAN/β-CD/TiO2/GO nanofibrous membrane is eco-friendly, reusable, and has great potential for the removal of dyes from industrial wastewaters.  相似文献   

7.
In this article, a novel and simple method to produce both boron doped and undoped holmia stabilized bismuth oxide nanoceramic materials has been put forward. Boron doped and undoped poly (vinyl alcohol)/bismuth–holmia acetate nanofibers were produced using the electrospinning technique and were calcined at 850 °C afterward in order to obtain nanopowder. The characteristics of the nanofibers were investigated with FT-IR, XRD, and SEM. XRD analyses showed that boron undoped holmia stabilized bismuth oxide nanopowders have the face-centered cubic structure (δ-phase), and that the incorporation of boron atoms into the composite prevents the nucleus formation and turns the structure into a more amorphous glassy form. The SEM micrographs of the fibers showed that the addition of boron results in the formation of cross-linked bright-surfaced fibers. The average fiber diameters for electrospun boron doped and undoped PVA/Bi–Ho acetate nanofibers were calculated using the ImageJ software as 102 nm and 171 nm, respectively.  相似文献   

8.
《Composite Interfaces》2013,20(8-9):711-724
Polyacrylonitrile fibers were electrospun yielding diameters in the range of 50 to 200 nm. These nanofibers were then immersed in an aqueous coating solution to deposit a continuous film of titanium dioxide on the surface. In order to shorten the coating time and optimize the metal oxide layer thickness, the fibers were surface functionalized by immersion in sodium hydroxide to have carboxylic acid groups. Polyelectrolytes were electrostatically adsorbed to some of the functionalized fiber surface samples prior to metal oxide deposition. The metal oxide nucleation density was compared after three hours for nanofibers with a cationic surface, an anionic surface, a carboxylic acid surface, and an untreated surface. Fibers with the carboxylic acid surface exhibited the highest nucleation density, which led to the shortest coating time. Such polymer-metal oxide nanoscale composite structures are expected to be of great utility in a number of applications, including sensors, photovoltaic cells, and catalytic surfaces.  相似文献   

9.
Electrospraying and electrospinning processes were employed for the production of nanocomposite material of polymer nanofibers blended with nanoparticles. The diameter of polymer nanofibers made of PVC, PSU or nylon was smaller than 500 nm. Metal oxide nanoparticles of TiO2, MgO, and Al2O3 of the size 20–100 nm suspended in methanol were deposited on the polymer nanofibers. Three configurations of electrospray/electrospun nozzles used for the nanocomposite production were tested: 1. simultaneous electrospraying during the electrospinning process, 2. electrospraying onto the same rotating drum after the electrospinning is completed, and 3. electrospraying onto the electrospun mat removed from the drum and placed onto a heated table.  相似文献   

10.
Polycaprolactone (PCL) scaffolds were produced by electrospinning. Polymeric solutions in a mix of dichloromethane (DCM) and dimethylformamide were electrospun to form fibers in the sub-micron range. Physical properties of the PCL solutions were characterized with respect to density, viscosity, conductivity and surface tension. Processing was optimized following Taguchi's methodology to select the set of processing parameters that resulted in producing fibers with the smallest diameters, minimum number of defects and with the narrowest distribution of fiber diameter. Morphology of electrospun fibers was qualitatively and quantitatively analyzed for the different sets of processing parameters. The optimum conditions found to electrospun PCL were used to process PCL solutions containing nanoparticles of hydroxyapatite (HA) or bioactive glass (BG). Bioactivity of nanocomposite electrospun membranes in simulated body fluid (SBF) was analyzed and biological response was tested by assessing proliferation and viability of MT3C3-E1 preosteoblasts cultured on PCL and its nanocomposite membranes.  相似文献   

11.
Composite nanofibrous mat composed of neat polyurethane (PU) and multiwalled carbon nanotubes/polyurethane (MWNT/PU) nanofibers have been fabricated by one-step angled two-nozzle electrospinning. The morphological, thermal, and mechanical properties of the electrospun nanofibers were evaluated. The diameters of electrospun neat PU and composite nanofibers ranged from 239 to 1058 nm. The two-nozzle electrospun (MWNT/PU)/PU composite nanofibers showed curly, and randomly-oriented fibers with interfiber bonding, and were generally bigger in size than single-nozzle electrospun nanofibers. The tensile strength of the neat PU composite nanofiber mat obtained from two-nozzle electrospinning was 25% higher than that obtained from neat PU single-nozzle electrospinning. The incorporation of MWNTs in the composite nanofiber increased the tensile strength by as much as 64% without reducing elongation, made the composite nanofiber more thermally stable, and improved the melting zone. The present results showed that side-by-side angled two-nozzle electrospinning can improve the quality of the electrospun nanofibers that could have potential application in different fields such as filtration, protective clothing and tissue engineering.  相似文献   

12.
Polyvinyl alcohol (PVA)/ammonium molybdate composite fibers were prepared by using sol-gel processing and electrospinning technique. After calcinations of the above precursor fibers at 500 °C, MoO3 nanofibers with a diameter of 100-150 nm were successfully obtained. MoO3 nanoplatelets and submicron platelets were prepared by further calcinations of the MoO3 nanofibers at 600 and 700 °C. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). A possible growth mechanism for the MoO3 nanofibers and nanoplatelets was suggested.  相似文献   

13.
SnO2-ZnO hollow nanofibers were fabricated through a facile single capillary electrospinning technology. The structure and toluene sensing properties of the hollow fibers were investigated. The results indicated that the fibers possess a hollow structure, a rough porous surface after being annealed at 600 °C and the diameters are in the range of 80-160 nm. A sensor fabricated from these fibers exhibits considerable sensitivity and good stability against toluene at 190 °C, which can be attributed to the special 1D hollow structure and the promoting effect of the SnO2/ZnO heterojunction. The formation mechanism and toluene sensing mechanism of SnO2-ZnO hollow nanofibers were also discussed.  相似文献   

14.
Singly distributed YBO3:Eu nanofibers with an average diameter of around 120 nm were fabricated using the electrospinning technique and characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The luminescent properties of the YBO3:Eu nanofibers were studied relative to the corresponding bulk material. The location of the charge transfer band in the excitation spectra shows a slight blueshift in the nanofibers compared with the bulk material. In the emission spectra, the ratio of the red emission at 611 nm to the orange emission at 591 nm (R/O value) in the nanofibers increased slightly, in contrast to the bulk, indicating that improved chromaticity can be obtained from YBO3:Eu nanofibers. The high color-rendering index obtained from them implies that these novel luminescent fibers can be used as potential candidates for nanodevices.  相似文献   

15.
Electrospinning process was optimized by using response surface methodology (RSM) to fabricate MWCNTs/PAN nanofibril composite non-woven fabrics of 180 nm average fiber diameter. The as-electrospun fabrics were hot-pressed to produce strong and flexible carbon nanofibril composite papers of 130 nm average fibril composite diameter. Dielectric constant of 300 and conductivity of 310 S/m were measured for these papers by using H10K13532-50LCR meter at 25,000 Hz. Analytical approach was introduced based on Lichtenecker modification formula to evaluate the electrical properties of the embedded MWCNTs, single nanofibers and single nanofibril composites as function in fabrics measured properties. 4156 S/m for MWCNTs, 360 S/m for carbonized electrospun PAN single nanofibers and 517 S/m for carbonized electrospun 5 wt% MWCNTs/PAN single nanofibril composites were reported. The ability to control the electrical properties of these papers over a wide range should position them as a versatile advanced material for numerous electronic, sensors and inter-connect applications.  相似文献   

16.
《Current Applied Physics》2014,14(7):928-931
Aligned magnetic blend of polystyrene–polyvinylpyrrolidone (PS–PVP) nanofibers were prepared by this method. First, polystyrene–polyvinylpyrrolidone (PS–PVP) blend solution in THF was synthesized. Then magnetic of PS–PVP–Fe3O4–polyethylene glycol (PEG) was prepared by masking method. Finally, magnetic nanofiber of PS–PVP–Fe3O4–PEG was prepared by electrospinning method, too. An electric potential difference of 25 kV was applied between the collector and a syringe tip, and the distance between the collector and the tip was 13 cm. Fe3O4 is exhibit various magnetic properties of which the complex permeability and the permittivity, in particular, are important in determining their high frequency characteristics. The magnetic oxide particles and nanofiber of nanometer size were characterized by TEM and SEM respectively. The thermal properties of nanofibers were determined by TGA and DSC. The magnetic characterization of the fibers was also performed by VSM and AFM techniques. On the other hand, nanofiber with diameters ranging from 30 to 40 nm, showing at room temperature, coercive field values of around 25 kV and saturation magnetization was 1.1 emu/g. Microwave reflection loss of the sample was tested at 8–12 GHz microwave frequencies and the results showed that magnetic nanofiber possessed the microwave absorbing properties.  相似文献   

17.
Dye-doped polymer micro- and nanofibers with tailored light emission properties have great potential for applications in optical, optoelectronic, or photonic devices. In this study, these types of structures were obtained by electrospinning rhodamine 6 G-doped polyvinylpyrrolidone (PVP) using a polymer solution of 10% (mass) concentration in ethanol. Polymer nanofibers with different morphologies (smooth and beaded) and diameters of about 500 nm were obtained using different electrospinning conditions with the same solutions. Fluorescence optical microscopy observations showed that the dye was distributed uniformly in the doped PVP nanofibers. Different shifts were observed when we compared the wavelength of the dye emission band peak of the smooth nanofibers (566 nm) and the wavelength of the dye emission band peak of the beaded fibers (561.5 nm) produced by electrospinning in different conditions with the wavelength of the emission band peak for transparent thin films produced by spin coating (558 nm) using the same polymer solution. This demonstrates that it is possible to tune the optical properties of electrospun dye-doped polymer nanofibers simply by modifying the morphology of the material, i.e., the parameters of the electrospinning process.  相似文献   

18.

The fiber spinning technique of electrospinning has been optimized in order to prepare unidirectionally aligned and structurally oriented fibers. For this paper, we designed a new device based on a 2D period collector fabrication and electrostatic fields analysis to obtain a large area latticework fibers pattern. The pattern was composed of polyvinylpyrrolidone (PVP)‐based sub‐micron fibers with diameters ranging from 910 nm to 1300 nm, which have potential applications in tissue cell cultures.  相似文献   

19.
《Composite Interfaces》2013,20(2-3):281-299
Nowadays, utilisation of biodegradable materials has become necessary in order to maintain global environmental and ecological balance. Fully biodegradable nano 'Green' textile composites have been prepared from cellulose nanofibers reinforced corn starch resin and ramie fabric. Nanofibers having dimensions of approximately 1 μm long and 20–30 nm in diameter are used in the study. The nanofibers were incorporated in corn starch resin via ball mill mixing using ceramic balls. Textile composites were fabricated by pasting the reinforced resin onto the ramie fabric and by hot compression molding technique. Interactions at the fiber–matrix interface and the compatibility between cellulose and corn starch resin molecules will affect the properties of the system. The well dispersed cellulose nanofibers contribute higher interfacial area and good fiber networking within the matrix resin. This will lead to better barrier properties. Sorption characteristics of water, oil and diesel in the textile composites were analysed and the influence of nano fibers and macro fibers on the transport phenomena was investigated. The kinetics of sorption-diffusion process was investigated. Kinetic parameters such as n, k, diffusion coefficient, permeability, solubility parameter, % swelling index, etc., were analysed. The presence of cellulose nanofibers influences the sorption mechanism. The water sorption mechanism in the nanocomposites was found to exhibit slight deviation from Fickian mode. Structure–property relationships of the nanocomposites were evaluated.  相似文献   

20.
Using a sol-gel processing and electrospinning technique, extrathin fibers of PVA (polyvinyl alcohol)/lithium chloride/cobalt acetate composite were prepared. After calcinations of the above precursor fibers at 600°C, LiCoO2 nanofibers with a diameter of 100-150 nm, were successfully obtained. Measurements of TG/DTA, IR, XRD, Raman, SEM, EDS, respectively, were performed to characterize the properties of the as-prepared materials. We observed a strong correlation between crystalline phase and morphology of the fibers and calcinations temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号