首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We consider a nonlocal delayed reaction–diffusion equation in an unbounded domain that includes some special cases arising from population dynamics. Due to the non-compactness of the spatial domain, the solution semiflow is not compact. We first show that, with respect to the compact open topology for the natural phase space, the solutions induce a compact and continuous semiflow ${\Phi}$ on a bounded and positively invariant set Y in C +?=?C([?1, 0], X +) that attracts every solution of the equation, where X + is the set of all bounded and uniformly continuous functions from ${\mathbb{R}}$ to [0, ∞). Then, to overcome the difficulty in describing the global dynamics, we establish a priori estimate for nontrivial solutions after describing the delicate asymptotic properties of the nonlocal delayed effect and the diffusion operator. The estimate enables us to show the permanence of the equation with respect to the compact open topology. With the help of the permanence, we can employ standard dynamical system theoretical arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated with the diffusive Nicholson’s blowfly equation and the diffusive Mackey–Glass equation.  相似文献   

3.
We study global dynamics of a mass conserved reaction–diffusion system. First, we show the global-in-time existence of the solution with compact orbit. Then the dynamical stability of local minima associated with a variational function is proven.  相似文献   

4.
This work is concerned with the spatiotemporal propagation phenomena for a time-periodic reaction-diffusion susceptible-infectious (SI) epidemic model with treatment in terms of the asymptotic speed of spread and periodic traveling waves. First, the asymptotic speed of spread c $c^*$ is characterized and the spreading properties of the model are analyzed by combining the periodic principal eigenvalue problem, comparison method, and the uniform persistence idea for a dynamical system. Second, by constructing suitable super- and subsolutions for truncation problems corresponding to the traveling wave system, the existence of periodic traveling waves is established via the fixed point theorem twice. It turned out that the asymptotic speed of spread coincides with the minimum wave speed of periodic traveling waves. Finally, via numerical simulation, the effects of some important parameters (such as diffusion rate, treatment rate, etc.) on the spreading speed are discussed, and the asymptotic properties of the periodic traveling waves are explored.  相似文献   

5.
In this work, a qualitative analysis is carried out for reaction–advection–diffusion (RAD) systems modeling the interactions between two species with Allee effect. In particular, we study different scenarios: mutualism, competition, and a predator–prey relationship in order to investigate the survival or extinction of both populations. Global existence and uniqueness of positive solutions of the proposed RAD problems are demonstrated. Equilibrium states and asymptotic behavior of solutions are obtained using the monotone method and the upper and lower solutions technique. Numerical simulations by a Crank–Nicolson monotone iterative method of the different asymptotic solution dynamics are shown to illustrate our theoretical results.  相似文献   

6.
We continue our study on the global dynamics of a nonlocal reaction–diffusion–advection system modeling the population dynamics of two competing phytoplankton species in a eutrophic environment, where both populations depend solely on light for their metabolism. In our previous work, we proved that system (1.1) is a strongly monotone dynamical system with respect to a non-standard cone related to the cumulative distribution functions, and further determined the global dynamics when the species have either identical diffusion rate or identical advection rate. In this paper, we study the trade-off of diffusion and advection and their joint influence on the outcome of competition. Two critical curves for the local stability of two semi-trivial equilibria are analyzed, and some new competitive exclusion results are obtained. Our main tools, besides the theory of monotone dynamical system, include some new monotonicity results for the principal eigenvalues of elliptic operators in one-dimensional domains.  相似文献   

7.
Direct and inverse boundary value problems for models of stationary reaction–convection–diffusion are investigated. The direct problem consists in finding a solution of the corresponding boundary value problem for given data on the boundary of the domain of the independent variable. The peculiarity of the direct problem consists in the inhomogeneity and irregularity of mixed boundary data. Solvability and stability conditions are specified for the direct problem. The inverse boundary value problem consists in finding some traces of the solution of the corresponding boundary value problem for given standard and additional data on a certain part of the boundary of the domain of the independent variable. The peculiarity of the inverse problem consists in its ill-posedness. Regularizing methods and solution algorithms are developed for the inverse problem.  相似文献   

8.
Y. Nec  A.A. Nepomnyashchy  A.A. Golovin 《PAMM》2007,7(1):2040025-2040026
Study of weakly non-linear dynamics of a reaction–super-diffusion system near a Hopf bifurcation by means of fractional analogues of complex Ginzburg-Landau and Kuramoto-Sivashinsky equations is presented. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Results on stability of two types of chemical reactions, one represented by an acyclic graph and the other as a reversible reaction have been extended to the case of reaction–diffusion systems. Lyapunov functions are used as the major method for showing asymptotic stability of spatially homogeneous equilibria. Some examples are considered for illustration.  相似文献   

10.
This Note deals with the boundary null-controllability of linear diffusion–reaction equations in a 2D bounded domain. We transform the determination of the sought HUM boundary control into the minimization of a continuous and strictly convex functional. In the case of a rectangular domain where the diffusion tensor is represented by a diagonal matrix, we establish a procedure based on the inner product method that uses a complete orthonormal family of Sturm–Liouville's eigenfunctions to express explicitly the sought control.  相似文献   

11.
12.
13.
In this paper, a new application of generalized differential transform method (GDTM) has been used for solving time-fractional reaction–diffusion equations. To illustrate the reliability of the method, some examples are provided.  相似文献   

14.
In this paper, we investigate the invariance and integrability properties of an integrable two-component reaction–diffusion equation. We perform Painlevé analysis for both the reaction–diffusion equation modelled by a coupled nonlinear partial differential equations and its general similarity reduced ordinary differential equation and confirm its integrability. Further, we perform Lie symmetry analysis for this model. Interestingly our investigations reveals a rich variety of particular solutions, which have not been reported in the literature, for this model.  相似文献   

15.
The purpose of this paper is to establish Bogoliubov averaging principle of stochastic reaction–diffusion equation with a stochastic process and a small parameter. The solutions to stochastic reaction–diffusion equation can be approximated by solutions to averaged stochastic reaction–diffusion equation in the sense of convergence in probability and in distribution. Namely, we establish a weak law of large numbers for the solution of stochastic reaction–diffusion equation.  相似文献   

16.
We consider a reaction–diffusion–ODE quiescent model in which the species can switch between mobile and immobile categories. We assume that the population inhabits a bounded region and study how its dynamics depend on the parameters describing switching rates and local population dynamics. Our results suggest that the transfer displays a stabilizing effect and inhibits the generation of spatial periodic solutions. A new method to obtain global stability and dissipative structure is also explored by constructing Lyapunov functionals to overcome the loss of compactness.  相似文献   

17.
Spatio-temporal dynamics of a reaction–diffusion–advection food-limited population model with nonlocal delayed competition and Dirichlet boundary condition are considered. Existence and stability of the positive spatially nonhomogeneous steady state solution are shown. Existence and direction of the spatially nonhomogeneous steady-state-Hopf bifurcation are proved. Stable spatio-temporal patterns near the steady-state-Hopf bifurcation point are numerically obtained. We also investigate the joint influences of some important parameters including advection rate, food-limited parameter and nonlocal delayed competition on the dynamics. It is found that the effect of advection on Hopf bifurcation is opposite with the corresponding no-flux system. The theoretical results provide some interesting highlights in ecological protection in streams or rivers.  相似文献   

18.
19.
20.
We study in this article the periodic homogenization problem related to a strongly nonlinear reaction–diffusion equation. Owing to the large reaction term, the homogenized equation has a rather quite different form which puts together both the reaction and convection effects. We show in a special case that the homogenized equation is exactly of a convection-diffusion type. This study relies on a suitable version of the well-known two-scale convergence method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号