首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, the interpolating moving least-squares (IMLS) method is discussed in details. A simpler expression of the approximation function of the IMLS method is obtained. Compared with the moving least-squares (MLS) approximation, the shape function of the IMLS method satisfies the property of Kronecker δ function. Then the meshless method based on the IMLS method can overcome the difficulties of applying the essential boundary conditions. The error estimates of the approximation function and its first and second order derivatives of the IMLS method are presented in n-dimensional space. The theoretical results show that if the weight function is sufficiently smooth and the order of the polynomial basis functions is big enough, the approximation function and its partial derivatives are convergent to the exact values in terms of the maximum radius of the domains of influence of nodes. Then the interpolating element-free Galerkin (IEFG) method based on the IMLS method is presented for potential problems. The advantage of the IEFG method is that the essential boundary conditions can be applied directly and easily. For the purpose of demonstration, some selected numerical examples are given to prove the theories in this paper.  相似文献   

2.
The two-grid method is a technique to solve the linear system of algebraic equations for reducing the computational cost. In this study, the two-grid procedure has been combined with the EFG method for solving nonlinear partial differential equations. The two-grid FEM has been introduced in various forms. The well-known two-grid FEM is a three-step method that has been proposed by Bajpai and Nataraj (Comput. Math. Appl. 2014;68:2277–2291) that the new proposed scheme is an ecient procedure for solving important nonlinear partial differential equations such as Navier–Stokes equation. By applying shape functions of IMLS approximation in the EFG method, a new technique that is called interpolating EFG (IEFG) can be obtained. In the current investigation, we combine the two-grid algorithm with the IEFG method for solving the nonlinear Rosenau-regularized long-wave (RRLW) equation. In other hand, we demonstrate that solutions of steps 1, 2, and 3 exist and are unique and also we achieve an error estimate for them. Moreover, three test problems in one- and two-dimensional cases are given which support accuracy and efficiency of the proposed scheme.  相似文献   

3.
An efficient semi-analytical method, namely the interpolating element-free Galerkin scaled boundary method (IEFG-SBM) is developed for structural dynamic analysis in this paper, which is based on boundary scattered nodes with no need of element connectivity. Since the shape functions of the improved interpolating moving least-squares (IIMLS) method satisfy the delta function property, the essential boundary conditions, as a result, can be enforced accurately without any additional efforts. Based on the improved continued fraction, the dynamic properties of a bounded domain are expressed by the high order static stiffness and mass matrices. This continued fraction solution is computationally more robust and the transient response can be obtained directly in the time domain using standard procedures in structural dynamics. It is testified from the computational results that the present method for structural dynamic analysis is quite easy to be implemented with high accuracy.  相似文献   

4.
二维瞬态热传导问题的无单元Galerkin法分析   总被引:3,自引:3,他引:0       下载免费PDF全文
采用无单元Galerkin(element-free Galerkin, EFG)法求解具有混合边界条件的二维瞬态热传导问题.首先采用二阶向后微分公式离散热传导方程的时间变量,将该问题转化为与时间无关的混合边值问题;然后采用罚函数法处理Dirichlet边界条件,建立了二维瞬态热传导问题的无单元Galerkin法;最后基于移动最小二乘近似的误差结果,详细推导了无单元Galerkin法求解二维瞬态热传导问题的误差估计公式.给出的数值算例表明计算结果与解析解或已有数值解吻合较好,该方法具有较高的计算精度和较好的收敛性.  相似文献   

5.
利用无单元Galerkin法,对Caputo意义下的时间分数阶扩散波方程进行了数值求解和相应误差理论分析。首先用L1逼近公式离散该方程中的时间变量,将时间分数阶扩散波方程转化成与时间无关的整数阶微分方程;然后采用罚函数方法处理Dirichlet边界条件,并利用无单元Galerkin法离散整数阶微分方程;最后推导该方程无单元Galerkin法的误差估计公式。数值算例证明了该方法的精度和效果。  相似文献   

6.
7.
A novel meshfree model based on the standard element-free Galerkin method incorporated moving Kriging interpolation (MK) is developed for free and forced vibration analysis of 2D structures. Instead of employing moving least square approximation (MLS), shape functions here are constructed by the MK method. Due to the satisfaction of the Kronecker delta function, the essential boundary conditions are thus imposed directly as the finite element method and no special techniques are required. Elastodynamic equations are transformed into a standard weak formulation and then discretized into a meshfree time-dependent equation solved by the standard Newmark time integration method. Some numerical examples of stuctural problems in 2D are attempted, and it is found that the method is adequately accurate and stable for dynamic problems. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this paper, we first give error estimates for the moving least square (MLS) approximation in the Hk norm in two dimensions when nodes and weight functions satisfy certain conditions. This two-dimensional error results can be applied to the surface of a three-dimensional domain. Then combining boundary integral equations (BIEs) and the MLS approximation, a meshless Galerkin algorithm, the Galerkin boundary node method (GBNM), is presented. The optimal asymptotic error estimates of the GBNM for three-dimensional BIEs are derived. Finally, taking the Dirichlet problem of Laplace equation as an example, we set up a framework for error estimates of the GBNM for boundary value problems in three dimensions.  相似文献   

9.
The numerical simulation of the mechanical behavior of industrial materials is widely used for viability verification, improvement and optimization of designs. Elastoplastic models have been used to forecast the mechanical behavior of different materials. The numerical solution of most elastoplastic models comes across problems of ill-condition matrices. A complete representation of the nonlinear behavior of such structures involves the nonlinear equilibrium path of the body and handling of singular (limit) points and/or bifurcation points. Several techniques to solve numerical problems associated to these points have been disposed in the specialized literature. Two examples are the load-controlled Newton–Raphson method and displacement controlled techniques. However, most of these methods fail due to convergence problems (ill-conditioning) in the neighborhood of limit points, specially when the structure presents snap-through or snap-back equilibrium paths. This study presents the main ideas and formalities of the Tikhonov regularization method and shows how this method can be used in the analysis of dynamic elastoplasticity problems. The study presents a rigorous mathematical demonstration of existence and uniqueness of the solution of well-posed dynamic elastoplasticity problems. The numerical solution of dynamic elastoplasticity problems using Tikhonov regularization is presented in this paper. The Galerkin method is used in this formulation. Effectiveness of Tikhonov’s approach in the regularization of the solution of elastoplasticity problems is demonstrated by means of some simple numerical examples.  相似文献   

10.
A method for the simulation of incompressible flows is described which is able to handle geometrically complex situations, such as those including moving and rotating objects in the flow field. In these situations, standard meshbased methods such as the finite element method (FEM) may fail if a suitable mesh can not be maintained at reasonable cost throughout the simulation. The proposed method introduces the desirable features of meshfree methods in parts of the domain where the mesh generates problems. This is realized by coupling FEM and element-free Galerkin (EFG) shape functions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In this paper, we consider the weak solutions of hyperbolic problems subject to inhomogeneous Dirichlet and Neumann boundary conditions. Using Fourier–Galerkin method, we obtain approximate solutions of the problems and test the obtained results on numerical examples by MAPLE®.  相似文献   

12.
张然 《计算数学》2020,42(1):1-17
本文考虑弱有限元(简称WG)方法在线弹性问题中的应用.WG方法是传统有限元方法的推广,用于偏微分方程的数值求解.和传统有限元一样,它的基本思想源于变分原理.WG方法的特点是使用在剖分单元内部和剖分单元边界上分别有定义的分片多项式函数(即弱函数)作为近似函数来逼近真解,并针对弱函数定义相应的弱微分算子代入数值格式进行计算.除此之外,WG方法允许在数值格式中引进稳定子以实现近似函数的弱连续性.WG方法具有允许使用任意多边形或多面体剖分,数值格式与逼近函数构造简单,易于满足相应的稳定性条件等优点.本文考虑WG方法在求解线弹性问题中的应用.围绕线弹性问题数值求解中常见的三个问题,即:数值格式的强制性,闭锁性,应力张量的对称性介绍WG方法在线弹性问题求解中的应用.  相似文献   

13.
The advection‐diffusion equation has a long history as a benchmark for numerical methods. Taylor‐Galerkin methods are used together with the type of splines known as B‐splines to construct the approximation functions over the finite elements for the solution of time‐dependent advection‐diffusion problems. If advection dominates over diffusion, the numerical solution is difficult especially if boundary layers are to be resolved. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show the behavior of the method with emphasis on treatment of boundary conditions. Taylor‐Galerkin methods have been constructed by using both linear and quadratic B‐spline shape functions. Results shown by the method are found to be in good agreement with the exact solution. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

14.
The complex variable element-free Galerkin (CVEFG) method is an efficient meshless Galerkin method that uses the complex variable moving least squares (CVMLS) approximation to form shape functions. In the past, applications of the CVMLS approximation and the CVEFG method are confined to 2D problems. This paper is devoted to 3D problems. Computational formulas and theoretical analysis of the CVMLS approximation on 3D domains are developed. The approximation of a 3D function is formed with 2D basis functions. Compared with the moving least squares approximation, the CVMLS approximation involves fewer coefficients and thus consumes less computing times. Formulations and error analysis of the CVEFG method to 3D elliptic problems and 3D wave equations are provided. Numerical examples are given to verify the convergence and accuracy of the method. Numerical results reveal that the CVEFG method has better accuracy and higher computational efficiency than other methods such as the element-free Galerkin method.  相似文献   

15.
权豫西  石智 《应用数学》2007,20(3):512-518
我们考虑问题K(x)uxx=ua.0<X〈1,t≥0,其中K(x)≥a≥0,u(0,t)=g,ix(0,t)=0.这是一个不适当的方程,因为当解存在时在边界g上一个小的扰动将对它的解造成很大的改变.我们考虑存在解u(x,·)∈L^2(R)用小波伽辽金方法和Meyer多分辨分析去滤掉高频部分,从而在尺度空间Vj上得到适定的近似解.我们也可以得到问题的准确解与它在Vj上的正交投影之间的误差估计.  相似文献   

16.
吴正朋  余德浩 《计算数学》2004,26(2):237-246
In this paper, we combine a finite element approach with the natural boundary element method to stduy the weak solvability and Galerkin approximations of a class of semilinear exterior boundary value problems. Our analysis is mainly based on the variational formulation with constraints. We discuss the error estimate of the finite element solution and obtain the asymptotic rate of convergence O(h^n) Finally, we also give two numerical examples.  相似文献   

17.
It is well known that discrete solutions to the convection-diffusion equation contain nonphysical oscillations when boundary layers are present but not resolved by the discretisation. However, except for one-dimensional problems, there is little analysis of this phenomenon. In this paper, we present an analysis of the two-dimensional problem with constant flow aligned with the grid, based on a Fourier decomposition of the discrete solution. For Galerkin bilinear finite element discretisations, we derive closed form expressions for the Fourier coefficients, showing them to be weighted sums of certain functions which are oscillatory when the mesh Péclet number is large. The oscillatory functions are determined as solutions to a set of three-term recurrences, and the weights are determined by the boundary conditions. These expressions are then used to characterise the oscillations of the discrete solution in terms of the mesh Péclet number and boundary conditions of the problem.

  相似文献   


18.
无网格Galerkin法与有限元耦合新算法   总被引:1,自引:0,他引:1  
通过构造新的斜坡函数,把无网格Galerkin法与有限元耦合算法应用到全域范围,并使其能适应不同连接域内单元结点构成,既满足了本质边界条件实现的需要,又能方便灵活的布置无网格点和有限元法中的单元,满足复杂计算要求.计算结果与理论解比较表明所提出的方法是可行和有效的.  相似文献   

19.
We obtain the global smooth solution of a nonlinear Schrödinger equations in atomic Bose-Einstein condensates with two-dimensional spaces. By using the Galerkin method and a priori estimates, we establish the global existence and uniqueness of the smooth solution.  相似文献   

20.
Recent years have witnessed growing interests in solving partial differential equations by deep neural networks, especially in the high-dimensional case. Unlike classical numerical methods, such as finite difference method and finite element method, the enforcement of boundary conditions in deep neural networks is highly nontrivial. One general strategy is to use the penalty method. In the work, we conduct a comparison study for elliptic problems with four different boundary conditions, i.e., Dirichlet, Neumann, Robin, and periodic boundary conditions, using two representative methods: deep Galerkin method and deep Ritz method. In the former, the PDE residual is minimized in the least-squares sense while the corresponding variational problem is minimized in the latter. Therefore, it is reasonably expected that deep Galerkin method works better for smooth solutions while deep Ritz method works better for low-regularity solutions. However, by a number of examples, we observe that deep Ritz method can outperform deep Galerkin method with a clear dependence of dimensionality even for smooth solutions and deep Galerkin method can also outperform deep Ritz method for low-regularity solutions.Besides, in some cases, when the boundary condition can be implemented in an exact manner, we find that such a strategy not only provides a better approximate solution but also facilitates the training process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号