共查询到20条相似文献,搜索用时 125 毫秒
1.
M.L. Carreño O.D. Cardona A.H. Barbat 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2011,27(4):278-293
The fuzzy sets theory and the artificial neural networks are computational intelligence tools which are nowadays widely used in earthquake engineering. This paper develops a method and a computer program which use these computational intelligence tools in order to support the damage and safety evaluation of buildings after strong earthquakes. The model uses an artificial neural network with three layers and a Kohonen learning algorithm; it also uses fuzzy sets in order to manage subjective information such as linguistic qualification of the damage levels in buildings and a fuzzy rule base to support the decision making process. All these techniques are incorporated in the developed computer program. The input data is the subjective and incomplete information about the building state obtained by possibly non experienced evaluators in the field of the seismic performance of buildings. The proposed method is implemented in a tool especially useful in the emergency response phase, when it supports the decision making regarding the building habitability and reparability. In order to show its effectiveness, two examples are included for two different types of buildings. 相似文献
2.
C. Agelet de Saracibar R. López B. Ducoeur M. Chiumenti B. de Meester 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2013,29(1):29-37
The motivation of this work is the modeling of the hardening precipitate and hardness evolutions of fully hardened heat treatable aluminium alloys during friction stir welding (FSW) and/or heat treatment processes. The model used is based on the kinetics of dissolution of precipitates model for hardened aluminium alloys given by Myhr and Grong (1991). This model contains a single independent variable, the time, and a single state variable, the volume fraction of hardening precipitates. A key point of this model is the identification of the effective activation energy for precipitates dissolution and the master curve defining the model, which was given by a look-up table. The goal of this work is to find an estimation of the effective activation energy and to model the dissolution rate of hardening precipitate in aluminium alloys using neural networks, avoiding the use of look-up tables. For this purpose a new and more convenient parametrization of the master curve is defined, a neural networks class is proposed, an objective functional is defined and a variational problem including independent parameters is solved. The novel methodology has been applied to different aluminium alloys, including the AA 6005A T6, AA 7449 T79 and AA 2198 T8. Experimental tests have been carried out for those aluminium alloys in order to get the HV1 hardness after isothermal heat treatments at different temperatures and for different treatment time durations. The effective activation energy for hardening precipitates dissolution and the master curve of the model have been obtained, using different network architectures, for the aluminium alloys considered in this work. 相似文献
3.
I. Bonola J. Avilés 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2013,29(1):52-60
A finite layer method for evaluation of the effects of seismic action on retaining walls is presented, which is based on the wave propagation theory and modal superposition. The system is defined by a rigid wall supported on an elastic stratum, with capacity of sliding and overturning of the base. With this model, the foundation flexibility as well as the energy dissipation by wave radiation is considered. It is demonstrated with numerical results that the magnitude of pressures on the wall depends on its movement capacity. 相似文献
4.
Francisco Ureña Prieto Juan José Benito Muñoz Luis Gavete Corvinos Eduardo Salete Casino Álvaro Casasús Acevedo 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2011,27(4):269-277
This paper shows the solution to the problem of seismic wave propagation in 2-D using generalized finite difference (GFD) explicit schemes. Regular and irregular meshes can be used with this method.As we are using an explicit method, it is necessary to obtain the stability condition by using the von Neumann analysis. We also obtained the star dispersion formulas for the phase velocities for the P and S waves, as well as the ones for the group velocities.As the control over the irregularity in the mesh is very important in the application of this method, we have defined an index of irregularity for the star (IIS) and another for the cloud (IIC), analyzing its relationship with the dispersion and time step used in the calculations. 相似文献
5.
Although the study of the sound pressure radiation from membranes and plates is not new, current and future applications have produced a large body of recent research in the field. Several works have been published on the radiation from general plane surfaces and some particular geometries such as rectangular, circular, elliptic and annular. However, the case of sound radiation from non-planar axisymmetric rings that could be applied to the design of coaxial loudspeakers has not received much attention. In this article, a simplified numerical approach for determining the sound pressure radiated from symmetric non-planar pistons and rings is presented. The method can also include those cases having a radially-symmetric velocity distribution. 相似文献
6.
The possibilities of computational methods for assessing the response of cable supported bridges under wind action are considered in this work. The main objective is to study the possibilities of substituting wind tunnel campaigns by computer based analyses, particularly at the early design stage. The preliminary proposed design for a continuous cable-stayed bridge with two main spans of 650 m and a single box girder deck has been considered as a case study. The force coefficients of the deck cross-section have been computed and the unsteady response associated to vortex-shedding has been simulated using CFD commercial software. Furthermore, an in-house piece of software has been employed to obtain the response for flutter and buffeting phenomena adopting the hybrid approach; with that purpose the experimental flutter functions of a similar box girder deck were adopted. The computational results have been validated by comparison with similar experimental results published by other researchers. It has been verified that the set of adopted methods offers reliable results with moderate costs; therefore, the proposed approach is very suitable at the early design stage of long span bridges or at conceptual design works. 相似文献
7.
X. Martinez S. Oller E. Barbero 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2011,27(3):189-199
This paper presents a new procedure to deal with the delamination problem found in laminated composites, based in a continuum mechanics formulation. The procedure proposed obtains the composite constitutive performance with the Serial/Parallel mixing theory, developed by F. Rastellini. This theory characterizes composite materials by coupling the constitutive behaviour of the composite components, imposing an iso–strain relation among the components in the fibre (or parallel) direction and an iso-stress relation in the remaining directions (serial directions). The proposed procedure uses a damage formulation to characterize the constitutive behaviour of matrix component in order to obtain the stress-strain performance of this material.With these two formulations, the delamination phenomenon is characterized naturally by the numerical simulation, being unnecessary the definition of special elements or computationally expensive techniques like the definition of contact elements or mesh separation. Matrix failure, as a result of the stress state found in it, leads to a reduction of the stiffness and strength capacity of the composite in its serial directions, among them, the shear component. This stiffness reduction provides a composite performance equivalent to what is found in a delaminated material.To prove the ability of the formulation proposed to solve delamination problems, the End Notch Failure test is numerically simulated and the results obtained are compared with experimental ones. The agreement found in the results with both simulations, numerical and experimental, validate the proposed methodology to solve the delamination problem. 相似文献
8.
This paper presents a numerical study of «T-Stub» steel connections using FEM analyses. In such connections prying action phenomenon may take place. Prying action effect on the bolts has been studied before but the location of the prying action forces has always been simplified. The effect of the thickness of «T-Stub» flanges on contact areas between flanges and support base is investigated in this paper. A 3D finite element model is used and interface elements are employed for the investigation. Nonlinear FE analyses are undertaken on connection with different flange thickness and bolt preload with two bolts. Nonlinear gap elements are used as interfaces. Discussion and conclusions on contact areas and stresses, prying action distributions and resultant of loads on bolts in the «T-Stub» connections are presented. 相似文献
9.
B. Zamora A.S. Kaiser 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2012,28(3):148-160
This work presents a numerical study on the turbulent flow of air with dispersed water droplets in separators of mechanical cooling towers. The averaged Navier-Stokes equations are discretised through a finite volume method, using the Fluent and Phoenics codes, and alternatively employing the turbulence models k ? ?, k ? ω and the Reynolds stress model, with low-Re version and wall enhanced treatment refinements. The results obtained are compared with numerical and experimental results taken from the literature. The degree of accuracy obtained with each of the considered models of turbulence is stated. The influence of considering whether or not the simulation of the turbulent dispersion of droplets is analyzed, as well as the effects of other relevant parameters on the collection efficiency and the coefficient of pressure drop. Focusing on four specific eliminators (‘Belgian wave’, ‘H1-V’, ‘L-shaped’ and ‘Zig-zag’), the following ranges of parameters are outlined: 1 ≤ Ue ≤ 5 m/s for the entrance velocity, 2 ≤ Dp ≤ 50 μm for the droplet diameter, 650 ≤ Re ≤ 8.500 for Reynolds number, and 0.05 ≤ Pi ≤ 5 for the inertial parameter. Results reached alternately with Fluent and Phoenics codes are compared. The best results correspond to the simulations performed with Fluent, using the SST k ? ω turbulence model, with values of the dimensionless scaled distance to wall y+ in the range 0.2 to 0.5. Finally, correlations are presented to predict the conditions for maximum collection efficiency (100 %), depending on the geometric parameter of removal efficiency of each of the separators, which is introduced in this work. 相似文献
10.
J. Alba J.P. Arenas R. del Rey 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2012,28(1):12-17
Obtaining pressure radiated by flat surfaces is not a new problem. This problem has studied by the complexity of the topic and its application to design flat speakers. These kind of speakers are the speakers that we use in televisions, ceilings, cinema screens, panels, etc. in this cases usually we have rectangular speakers.The single source model is the simplest model to convert the surface vibration to radiated pressure in a point. This is an easy model but it is very slow, especially when we want calculate at high frequencies. For rectangular surfaces there are models that use relatively complex auxiliary functions. In this case the calculation is accelerated but its implementation is more complicated and is necessary to particularize each situation.This paper presents the decomposition of a rectangular surface in several circular surfaces, by means of area associations, seeking a rapid method based on circular pistons whose behavior is known with an acceptable error in the allocation. 相似文献
11.
Numerical models of heat transfer and fluid flow used in the simulation of the friction-stir welding (FSW) process have contributed to the understanding of the process. However, there are some input model parameters that cannot be easily determined from fundamental principles or the welding conditions. As a result, the model predictions are not always in agreement with experimental results. In this work, the Levenberg-Marquardt (LM) method is used in order to perform a non-linear estimation of the unknown parameters present in the heat transfer and fluid flow models, by adjusting the temperatures results obtained with the models to temperature experimental measurements. These models are implemented in a general-purpose software that uses a numerical formulation developed from the finite element method (FEM). The unknown parameters are: the friction coefficient and the amount of adhesion of material to the surface of the tool, the heat transfer coefficient on the bottom surface and the amount of viscous dissipation converted into heat. The obtained results show an improvement in the numerical model predictions from the incorporation of parameter estimation techniques. 相似文献
12.
Y.F. Vargas L.G. Pujades A.H. Barbat J.E. Hurtado 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2013,29(2):63-78
Currently, many structures existing in seismic areas are highly vulnerable because they have been built without the use of seismic design codes or by using outdated codes. Often, methods for assessing the vulnerability of the structures do not take into account that their seismic behavior is dynamic and highly nonlinear and, moreover, that the structural characteristics and action have large uncertainties. This article aims to assess the vulnerability of structures taking into account that the mechanical properties of materials and the seismic action are random variables, by using advanced techniques based on the Monte Carlo method and on the nonlinear stochastic dynamics. The results obtained with these techniques are compared with those corresponding to a standard vulnerability assessment, based on deterministic models, in order to highlight the differences between both approaches. The main conclusion of this work is the need to address the vulnerability assessment problem from a probabilistic perspective which, combined with advanced nonlinear static and dynamic structural analysis techniques, provides a powerful tool giving information impossible to be captured by means of deterministic models. Finally, detailed results obtained for a building with waffle slabs, which is a structural typology widely used in Spain, are included and discussed. 相似文献
13.
The recent requirements of Spanish regulations and directives, on their turn based on European directives, have led to the development of a new two dimensional open channel flow modelling tool. The tool, named Iber, combines a hydrodynamic module, a turbulence module and a sediment transport module, and is based in the finite volume method to solve the involved equations. The simulation code has been integrated in a pre-process and post-process interface based on GiD software, developed by CIMNE. The result is a flow and sediment modelling system for rivers and estuaries that uses advanced numerical schemes, robust and stable, which are especially suitable for discontinuous flows taking place in torrential and hydrologically irregular rivers. 相似文献
14.
F. Salazar E. Oñate R. Morán 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2012,28(2):112-123
The paper presents the results of the application of the Particle Finite Element Method (PFEM) to the analysis of landslides in reservoirs. This is a complex phenomenon, because of the interaction between the landslide, the still water in the reservoir and the dam. PFEM combines a Lagrangian approach with the solution of the governing equations of the problem using the FEM. A mesh connecting the initial set of particles (nodes) is re-generated in every time step. Some validation cases are presented, in which PFEM results are compared with experimental data. More complex calculations have been made over the actual geometry of reservoirs taken from the cartographic information of the sites. In these cases the wave generation, its propagation and dam overtopping are reproduced. Finally, Lituya bay rock slide in which 90 × 106 tons of rocks fell on the bay, generating a huge wave that caused a maximum run-up of 524 m on the opposite shore, has been simulated in 3D. The results show that PFEM is a useful tool in risk assessment related with landslides in reservoirs as it gives a good approximation to the potential affections, thus allowing the appropriate design of protection measures. 相似文献
15.
E. Puente M. Lázaro O. Abreu J.A. Capote D. Alvear 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2013,29(4):208-214
The pyrolysis models undergoes a fast development due to the enhancement of both the computational power and the new test used to characterize the behaviour of materials under thermal stresses, which were widely used in the field of the chemical engineering to obtain the reaction rates. Thus, these models allow us to characterize either the transient heat of material (thermal inertia) or the complete chemical scheme of mass loss processes (kinetic triplet). The pyrolysis model needs a several number of parameters what does the optimization of a suitable set of parameters a difficult task. Two kinds of materials have been investigated; the first one was a real material which mass loss process was characterized as “one-step” reaction and the second one as a “two-steps” process. Further, it has been analyzed the influence of some algorithm features (initial population number, parameter range, crossover influence) in the optimization time and also in the accuracy of results. 相似文献
16.
17.
J.L. Curiel-Sosa D.R.J. Owen 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2013,29(2):92-103
Simulation problems involving non-linear materials imply in numerous cases divergence of the implicit method which use return mapping algorithms for modelling of the nonlinear response. A switching implicit-explicit numerical technique in the context of Finite Element Methods is presented in this paper. Implicit/explicit mesh partitions are not considered whatsoever. Formulation for application to nonlinear hyperelastic materials and nonlinear elastic-plastic materials is provided. Furthermore, the response of the solid subjected to large deformations is presented and is embedded in the proposed technique. Numerical tests for nonlinear problems (geometric and/or material) showed the accurateness of the technique. 相似文献
18.
M.I. Lamas Galdo C.G. Rodríguez Vidal J.D. Rodríguez García 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2013,29(4):234-240
In this paper, the numerical method level set has been used to model the combustion process in an Otto two-stroke engine. The level set has been implemented in a CFD (Computational Fluid Dynamics) software based in finite volumes. The pressure and temperature fields have been obtained, such as the propagation of the flame front. In order to validate this model, the numerically obtained results have been compared with experimental data, verifying a satisfactory concordance between both of them. Besides, the level set method has been compared with other numerical procedure, showing the difference between both results. 相似文献
19.
C.A. Álvarez H. A.L.G.A. Coutinho 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2013,29(4):189-195
In this work we use the Unusual Stabilized Finite Element Method (USFEM) associated to Rothe's method for solving the redistancing problem in the Level Set Method. Rothe's method is used first for advancing the solution in (pseudo)time and USFEM for solving the resulting steady advective–reaction problem in each time step. Several 2D problems are solved and results compared with SUPG scheme supplemented with a nonlinear discontinuity–capturing operator. 相似文献
20.
L. Battaglia J. D’Elía M. Storti 《Revista Internacional de Métodos Numéricos para Cálculo y Dise?o en Ingeniería》2012,28(2):124-134
Sloshing of fluids with a free surface contained in liquid storage tanks is numerically simulated by an arbitrary Lagrangian-Eulerian formulation. The fluid is considered viscous and Newtonian, while the flow is assumed laminar and incompressible. A partitioned and distributed computational code is employed, which solves three instances each time step: (i) the determination of the fluid state, given by the Navier–Stokes equations; (ii) the displacement of the free surface; and (iii) the update of the position of the internal nodes of the mesh, that is deformed as a consequence of the free surface displacement. The purpose of the work is verifying the applicability of the method to sloshing problems with known solutions, as well as the resolution of some practical examples. Numerical examples include validations against analytical solutions, where the wave period and damping rate are well captured, comparisons with reference results from other authors and a sample of sloshing induced by seismic actions. 相似文献