首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Different ways of transferring information regarding the mixture fraction, its sub-grid scale variance and the scalar dissipation rate are examined in terms of a Large Eddy Simulation (LES)/Conditional Moment Closure (CMC) calculation. In such a simulation, information must be transferred from a fine LES grid to a usually coarser CMC grid. Different options of calculating conditional and unconditional quantities in the CMC resolution are assessed by filtering experimental mixture fraction and scalar dissipation rate data at various resolutions. It was found that when a presumed shape for the Filtered Density Function at the CMC resolution is used, special care must be given to the mixture fraction variance. It was also found that the Amplitude Mapping Closure model can be used for the conditional scalar dissipation rate. LES/CMC with detailed chemistry of a bluff-body stabilised burner was performed using two different ways of calculating the turbulent diffusivity. The structure of the flame is realistic, with little difference noticed when using the two diffusivities.  相似文献   

2.
A direct numerical simulation of turbulent channel flow with an imposed mean scalar gradient is analyzed with a focus on passive scalar flux modelling and in particular the treatment of the passive scalar dissipation equation. The Prandtl number is 0.71 and the Reynolds number based on the wall friction velocity and the channel half width is 265. Budgets are presented for the passive scalar variance and its dissipation rate, as well as for the individual scalar flux components. These form a basis for a discussion of modelling issues related to explicit algebraic scalar flux modelling. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
A joint probability distribution function of a conservative scalar (mixture fraction) and its gradient is predicted numerically. Statistical moments of this function are compared to their approximations, direct numerical simulation data, and also to the results obtained by simplified models for a conditional rate of scalar dissipation, the surface density function, and the one-point PDF of scalar fluctuation under homogeneous isotropic turbulence. The results allow to evaluate the performance of existing statistical micromixing models.  相似文献   

4.
In this paper, we study numerically the dispersion of a passive scalar released from an instantaneous point source in a built-up (urban) environment using a Reynolds-averaged Navier–Stokes method. A nonlinear k? turbulence model [Speziale, C.G., 1987. On nonlinear kl and k? models of turbulence. J. Fluid Mech., 178, 459–475] was used for the closure of the mean momentum equations. A tensor diffusivity model [Yoshizawa, A., 1985. Statistical analysis of the anisotropy of scalar diffusion in turbulent shear flows. Phys. Fluids, 28, 3226–3231] was used for closure of the scalar transport equations. The concentration variance was also calculated from its transport equation, for which new values of Yoshizawa’s closure coefficients are used, in order to account for the instantaneous tracer release and the complex geometry. A new dissipation length-scale model, required for the modelling of the dissipation rate of concentration variance, is also proposed. The numerical results for the flow, the pollutant concentration and the concentration variance, are compared with experimental data. This data was obtained from a water-channel simulation of a full-scale field experiment of tracer dispersion through a large array of building-like obstacles known as the Mock Urban Setting Trial (MUST).  相似文献   

5.
We estimate the effect of finite spatial resolution of a probe for scalar measurements, using a database from direct numerical simulations (DNS). These are for homogeneous isotropic turbulence in temporal decay, Schmidt number unity, and low Taylor-microscale Reynolds number (≃27–42). The probe could be a cold wire for measuring temperature in a turbulent flow. Correction factors for the scalar variance, scalar dissipation rate, and mixed velocity-scalar derivative skewness are estimated, for a sensor length up to 15 times the Batchelor length scale. It is shown that the lack of resolution yields the largest attenuation on the dissipation rate, followed by the scalar variance. On the contrary, the mixed skewness, which is affected the least, is overestimated. Further, it is shown that if one estimates the mixed skewness via the scalar variance dynamical equation and neglects the term involving the time derivative of the scalar energy spectrum, large errors in the correction factor of the mixed skewness are introduced. Finally, it is found that correction factors obtained assuming Kraichnan scalar model spectrum and following Wyngaard (in Phys Fluids 14:2052–2054, 1971) approach are close to those from the DNS.  相似文献   

6.

The modelling of scalar dissipation rate in conditional methods for large-eddy simulations is investigated based on a priori direct numerical simulation analysis using a dataset representing an igniting non-premixed planar jet flame. The main objective is to provide a comprehensive assessment of models typically used for large-eddy simulations of non-premixed turbulent flames with the Conditional Moment Closure combustion model. The linear relaxation model gives a good estimate of the Favre-filtered scalar dissipation rate throughout the ignition with a value of the related constant close to the one deduced from theoretical arguments. Such value of the constant is one order of magnitude higher than typical values used in Reynolds-averaged approaches. The amplitude mapping closure model provides a satisfactory estimate of the conditionally filtered scalar dissipation rate even in flows characterised by shear driven turbulence and strong density variation.

  相似文献   

7.
内螺纹通常是机械零件的疲劳强度薄弱部位。由于螺纹建模困难、计算量极大而且不容易收敛,工程上普遍采用无螺纹的简化模型进行仿真。简化模型的缺点是无法反映螺纹根部应力集中,所以应力结果是不正确的。针对此问题,提出一种基于简化模型仿真的内螺纹根部应力分析方法,该方法把内螺纹根部的应力分解成近源应力分量和远源应力分量,并根据它们的特点提出近源应力转换矩阵、远源应力转换矩阵的概念以及获取方法,利用这两个矩阵可以将简化模型仿真结果转换为近源应力和远源应力,然后叠加得到螺纹根部的最大应力。计算结果显示,内螺纹应力转换法基本上达到了三维细节模型的有限元计算精度,尤其是在疲劳强度薄弱部位即孔底端第一扣啮合螺纹根部,两种方法的结果吻合良好,证明了内螺纹应力转换法的精确性和有效性。  相似文献   

8.
A method for predicting filtered chemical species concentrations and filtered reaction rates in Large-Eddy Simulations of non-premixed, non-isothermal, turbulent reacting flows has been demonstrated to be quite accurate for higher Damköhler numbers. This subgrid-scale model is based on flamelet theory and uses presumed forms for both the dissipation rate and subgrid-scale probability density function of a conserved scalar. Inputs to the model are the chemistry rates, the Favre-filtered scalar, and its subgrid-scale variance and filtered dissipation rate. In this paper, models for the filtered dissipation rate and subgrid-scale variance are evaluated by filtering data from 5123-point Direct Numerical Simulations of a single-step, isothermal reaction developing in the isotropic, incompressible, decaying turbulence field of Comte-Bellot and Corrsin. Both the subgrid-scale variance and the filtered dissipation rate models (the sub-models) are found to be reasonably accurate. The effect of the errors introduced by the sub-models on the overall model is found to be small, and the overall model is shown to accurately predict the spatial average of the filtered species concentrations over a wide range of times.  相似文献   

9.
The modelling of conditional scalar dissipation in locally self-similar turbulent reacting jets is considered. The streamwise dependence in the transport equation of the conserved scalar pdf is represented by a function solely dependent on centreline mixture fraction. This procedure provides a simple model suitable for non-homogeneous flows and ensures positive values for conditional scalar dissipation. It has been tested in pure hydrogen-air jet diffusion flames using a Conditional Moment Closure method with detailed 12species, 23 reactions chemistry. The calculations show good agreement of the averaged scalar dissipation with reference values and the model proves to be superior to previous models based on homogeneous flows if the distribution of the conditional scalar dissipation in mixture fraction space is compared with experimental results. A dependence of NO predictions on the model of conditional scalar dissipation can be observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Simulations of turbulent CH4-air counterflow flames are presented, obtained in terms of zero and two-dimensional first-order Conditional Moment Closure (CMC) to study the flame structure and extinction limits. The CMC equation with detailed chemistry is solved without the need for operator splitting, while the accompanying flow field is determined using a commercial CFD software employing a Reynolds stress turbulence model and additional transport equations for the turbulent scalar flux and for the mean scalar dissipation rate. Two detailed chemical mechanisms and different conditional scalar dissipation rate models have been examined and small differences were found.The first-order CMC captures the overall structure of the counterflow flame accurately for the unconditional averages. The calculated conditional averages behave as if the scalar dissipation rate were under-predicted, although a comparison with measurement of the conditional scalar dissipation rate is reasonable. The calculated extinction velocity is found to be much higher than the experimental value, but the trend of increasing extinction velocity with air dilution of the fuel stream is captured well. The discrepancies with the data are mostly attributed to the neglect of conditional fluctuations.  相似文献   

11.
The effect of spatial averaging is important for scalar gradient measurements in turbulent nonpremixed flames, especially when the local dissipation length scale is small. Line imaging of Raman, Rayleigh and CO-LIF is used to investigate the effects of experimental resolution on the scalar variance and radial gradient in the near field of turbulent nonpremixed CH4/H2/N2 jet flames at Reynolds numbers of 15,200 and 22,800 (DLR-A and B) and in piloted CH4/air jet flames at Reynolds numbers of 13,400, 22,400 and 33,600 (Sandia flames C/D/E). The finite spatial resolution effects are studied by applying the Box filter with varying filter widths. The resulting resolution curves for both scalar variance and mean squared-gradient follow nearly the same trends as theoretical curves calculated from the model turbulence kinetic energy spectrum of Pope. The observed collapse of resolution curves of mean squared-gradient for nearly all studied cases implies the shape of the dissipation spectrum is approximately universal. Fluid transport properties are shown to have no effect on the dissipation resolution curve, which implies that the dissipation length scale inferred from the square gradient is equivalent to the length scale for the scalar dissipation rate, which includes the diffusion coefficient. With the Box filter, the required spatial resolution to resolve 98% of the mean dissipation rate is about one−two times of the dissipation cutoff length scale (analogous to the Batchelor scale in turbulent isothermal flows). The effects of resolution on the variances of mixture fraction, temperature, and the inverted Rayleigh signal are also compared. The ratio of the filtered variance to the true variance is shown to depend nearly linearly on the probe resolution. The inverted Rayleigh scattering signal can be used to study the resolution effect on temperature variance even when the Rayleigh scattering cross section is not constant. The experimental results also indicate that these laboratory scale turbulent jet flames have small effective Reynolds numbers, such that there is some direct interaction of the large (energy containing) and small (dissipative) scalar length scales, especially for the near field case at x/d = 7.5 of the piloted Sandia flames C/D/E.  相似文献   

12.
A linear eddy model for subgrid mixing and combustion has been coupled to a large eddy simulation of the turbulent nonpremixed piloted jet flame (Sandia Flame D). For the combustion reaction, simplified, single-step, irreversible, Arrhenius kinetics are used. The large scale and the subgrid structure of the flow are compared with experimental observations and, where appropriate, with a flamelet model of the flame. The main objective of this work is to demonstrate the feasibility of the LES-LEM approach for determining the structure of the subgrid scalar dissipation rate and the turbulence-chemistry interactions. The results for the large- and subgrid-scale structure of the flow show a reasonable agreement with the experimental observations.  相似文献   

13.
Dissipation rates of the turbulent kinetic energy and of the scalar variance are underestimated when the measurement resolution of the small scales of a turbulent flow field are insufficient. Results are presented of experiments conducted in a salt-stratified water tunnel (Schmidt number ∼700). Dissipation rates are determined to be underestimated, and thus correction techniques based on velocity structure functions and mixed-moment functions are proposed. Dissipation rates in laboratory experiments of shear-free, grid-generated turbulence are determined from balance calculations of the kinetic energy and scalar variance evolution equations. Comparisons between the structure function and balance estimates of dissipation show that the corrections are O(1) for the kinetic energy dissipation rate, and are O(100) for the scalar variance dissipation rate. This difference is due to the lack of resolution down to the Batchelor scales that is required for a high Schmidt number flow. Simple correction functions based on microscale Reynolds numbers are developed for both turbulent kinetic energy and scalar variance dissipation rates. Application of the technique to the results of laboratory experiments of density stratified turbulence, sheared turbulence, and sheared density stratified turbulence yields successful corrections. It is also demonstrated that the Karman–Howarth equality (and the analogous Yaglom equation) that relates second and third-order structure functions to dissipation rates is valid for both unstrained (decaying grid-generated turbulence) and density stratified and sheared turbulence at least up to the magnitudes of strains of the current experiments Nt∼10, St∼10, respectively. This is helpful for it allows the use of these equations in the analysis of turbulence even when the large scale background profiles of velocity and scalar are unknown.  相似文献   

14.
The influences of differential diffusion rates of heat and mass on the transport of the variances of Favre fluctuations of reaction progress variable and non-dimensional temperature have been studied using three-dimensional simplified chemistry based Direct Numerical Simulation (DNS) data of statistically planar turbulent premixed flames with global Lewis number ranging from Le?= 0.34 to 1.2. The Lewis number effects on the statistical behaviours of the various terms of the transport equations of variances of Favre fluctuations of reaction progress variable and non-dimensional temperature have been analysed in the context of Reynolds Averaged Navier Stokes (RANS) simulations. It has been found that the turbulent fluxes of the progress variable and temperature variances exhibit counter-gradient transport for the flames with Lewis number significantly smaller than unity whereas the extent of this counter-gradient transport is found to decrease with increasing Lewis number. The Lewis number is also shown to have significant influences on the magnitudes of the chemical reaction and scalar dissipation rate contributions to the scalar variance transport. The modelling of the unclosed terms in the scalar variance equations for the non-unity Lewis number flames have been discussed in detail. The performances of the existing models for the unclosed terms are assessed based on a-priori analysis of DNS data. Based on the present analysis, new models for the unclosed terms of the active scalar variance transport equations are proposed, whenever necessary, which are shown to satisfactorily capture the behaviours of unclosed terms for all the flames considered in this study.  相似文献   

15.
A recently developed conditional sampling-based method for correcting noise effects in scalar dissipation rate measurements and for estimating the extent of resolution of the dissipation rate is employed to analyze the data obtained in turbulent partially premixed (Sandia) flames. The method uses conditional sampling to select instantaneous fully resolved local scalar fields, which are analyzed to determine the measurement noise and to correct the Favre mean, conditional, and conditionally filtered dissipation rates. The potentially under-resolved local scalar fields, also selected using conditional sampling, are corrected for noise and are analyzed to examine the extent of resolution. The error function is used as a model for the potentially under-resolved local scalar to evaluate the scalar dissipation length scales and the percentage of the dissipation resolved. The results show that the Favre mean dissipation rate, the mean dissipation rate conditional on the mixture fraction, and dissipation rate filtered conditionally on the mixture fraction generally are well resolved in the flames. Analyses of the dissipation rates filtered conditionally on the mixture fraction and temperature show that the length scale increases with temperature, due to lower dissipation rate and higher diffusivity. The dissipation rate is well resolved for temperatures above 1,300 K but is less resolved at lower temperatures, although the probability of very low temperature events is low. To fully resolve these rare events the sample spacing needs to be reduced by approximately one half. The present study further demonstrates the effectiveness of the new noise correction and length scale estimation method.  相似文献   

16.
In this paper, we develop a shell model for the velocity and scalar concentrations that, by design, is consistent with the eddy damped quasi-normal Markovian (EDQNM) model for multiple mixing scalars. We review the realizable form of the EDQNM model derived by Ulitsky and Collins (J Fluid Mech 412:303–329, 2000), which forms the basis for the shell model. The equations governing the velocity and scalar within each shell are stochastic ordinary differential equations with drift and diffusion terms chosen so that the velocity variance, velocity–scalar cross correlations, and scalar–scalar cross correlations within each shell precisely match the EDQNM model predictions. Consequently, shell averages can be thought of as a representation of the discrete three-dimensional spectrum. An advantage the shell model has over the original EDQNM equations is that the sum of each realization over the shells is a model for the fine-grained, joint velocity/scalar probability density function (PDF). Indeed, this provides some of the motivation for the development of the model. We cannot exploit this feature in the present study of the mixing of two scalars with uniform mean gradients, as the PDF is a joint Gaussian throughout (and hence the correlation matrix completely defines the distribution). The model is capable of predicting Lagrangian correlation functions for the scalar, scalar dissipation and velocity. We find the predictions of the model are in good qualitative agreement with direct numerical simulations by Yeung (J Fluid Mech 427:241–274, 2001). Eventually we will apply the shell model to scalars that are initially highly non-Gaussian (e.g., double delta function) and observe the relaxation towards a Gaussian. As the shell model contains information on the spectral distribution of the scalar field, the relaxation rate will depend upon the length and time scales of the turbulence and the scalar fields, as well as the molecular diffusivities of the species. The full capabilities of the PDF predictions of the model will be the subject of a future publication.  相似文献   

17.
This paper examines the effects of scalar dissipation rate modelling on mean reaction rate predictions in turbulent premixed flames. The sensitivity of the mean reaction rate is explored by using different closures for scalar dissipation and the sensitivity of the scalar dissipation models themselves is also examined with respect to their defining constants. The influence of different scalar dissipation models on the flame location and mean velocities is reported and compared with experimental results. The predicted reaction rate is found to be sensitive to the choice of closure used for scalar dissipation and also to the respective constants used in the scalar dissipation models. It is also found that the scalar dissipation models involving chemical and turbulent time scales yield a more physically plausible reaction rate when compared with the scalar dissipation models relying only on the turbulent time scale.  相似文献   

18.
Both a real time optical interferometric experiment and a numerical simulation of two-dimension non-steady state model were employed to study the growth process of aqueous sodium chlorate crystals. The parameters such as solution concentration distribution, crystal dimensions, growth rate and velocity field were obtained by both experiment and numerical simulation. The influence of earth gravity during crystal growth process was analyzed. A reasonable theory model corresponding to the present experiment is advanced. The thickness of concentration boundary layer was investigated especially. The results from the experiment and numerical simulation match well.  相似文献   

19.
20.
The relationship between the one-point probability-density-function (PDF) of the dissipation rate of mixture fraction fluctuations and the corresponding resolved quantity available in large eddy simulation (LES) is analyzed. The investigation pursues two fronts: an a priori study using direct numerical simulation (DNS), and an analytic development that, using common turbulence physics simplifications, relates the one-point statistics of the resolved and true scalar dissipations. Particularly, the analysis reveals the connection between the multi-point correlations of the mixture fraction gradient and the one-point PDF of the resolved scalar dissipation. A DNS of a temporally evolving shear layer with and without heat release is used to quantify the accuracy of the analytical result. It is verified, both by filtering the DNS and from the theory, that increasing the filter cutoff width reduces the magnitude of the resolved scalar dissipation fluctuations, as expected and observed experimentally. Comparison with DNS indicates that the analytical relationship predicts the behavior of the resolved scalar dissipation PDF well at the center planes of the shear layer, where turbulence is locally more isotropic and homogeneous. Large-scale anisotropy and inhomogeneities in the DNS degrade the accuracy of the approximate analytical result close to the edges of the shear layer. These results may be improved with future investigations to account fully for the missing statistics in LES, which have the potential to allow a more accurate quantification of finite-rate chemistry effects in reacting flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号