首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
At the interface between solid surfaces and cavities filled with gaseous or liquid xenon, the nuclear magnetization of (131)Xe (S = (3)/(2)) is subject to quadrupolar interactions which may lead to higher rank single-quantum coherences that can be described by tensor elements T(2,)(+/-)(1) and T(3,)(+/-)(1). This can be demonstrated by multiple-quantum filtered (MQF) NMR experiments. In gaseous xenon on Pyrex surfaces, the primary source of such coherences was shown to be coherent evolution induced by a nonvanishing average quadrupolar coupling. In this contribution, MQF NMR is applied to aerogels filled with liquid xenon to demonstrate the potential of this technique for material sciences. Xenon in the liquid phase provides a sufficient spin density to obtain reasonable signal-to-noise ratios. Coherent evolution and relaxation both contribute to the creation of higher rank coherences depending on the presence or absence of water molecules on the surface. These two processes can be distinguished experimentally and provide complementary information about the surface of the host material.  相似文献   

2.
Reversibly bound Xe is a sensitive NMR and MRI reporter with its resonance frequency being influenced by the chemical environment of the host. Molecular imaging of enzyme activity presents a promising approach for disease identification, but current Xe biosensing concepts are limited since substrate conversion typically has little impact on the chemical shift of Xe inside tailored cavities. Herein, we exploit the ability of the product of the enzymatic reaction to bind itself to the macrocyclic hosts CB6 and CB7 and thereby displace Xe. We demonstrate the suitability of this method to map areas of enzyme activity through changes in magnetization transfer with hyperpolarized Xe under different saturation scenarios.  相似文献   

3.
Local ordering in co‐deposits of water and xenon atoms produced at low temperatures can be followed uniquely by 129Xe NMR spectroscopy. In water‐rich samples deposited at 10 K and observed at 77 K, xenon NMR results show that there is a wide distribution of arrangements of water molecules around xenon atoms. This starts to order into the definite coordination for the structure I, large and small cages, when samples are annealed at ~140 K, although the process is not complete until a temperature of 180 K is reached, as shown by powder Xray diffraction. There is evidence that Xe ? 20 H2O clusters are prominent in the early stages of crystallization. In xenon‐rich deposits at 77 K there is evidence of xenon atoms trapped in Xe ? 20 H2O clusters, which are similar to the small hydration shells or cages observed in hydrate structures, but not in the larger water clusters consisting of 24 or 28 water molecules. These observations are in agreement with results obtained on the formation of Xe hydrate on the surface of ice surfaces by using hyperpolarized Xe NMR spectroscopy. The results indicate that for the various different modes of hydrate formation, both from Xe reacting with amorphous water and with crystalline ice surfaces, versions of the small cage are important structures in the early stages of crystallization.  相似文献   

4.
A cyclic hexapeptide with three pyridyl moieties connected to its backbone forms a hydrogen‐bonded dimer, which tightly encapsulates a single xenon atom, like a pearl in its shell. The dimer imprints its shape and symmetry to the captured xenon atom, as demonstrated by 129Xe NMR spectroscopy, single‐crystal X‐ray diffraction, and computational studies. The dimers self‐assemble hierarchically into tubular structures to form a porous supramolecular architecture, whose cavities are filled by small molecules and gases.  相似文献   

5.
Syndiotactic polystyrene (sPS) forms a clathrate phase with a variety of compounds. Not only rigid molecules but also flexible molecules can be stored in the cavities of the clathrate phase. To clarify the adjustment mechanism of a flexible guest molecule to the sPS clathrate system, the host and guest structures were investigated by means of solid-state 13C NMR and Raman spectroscopy, and X-ray diffractometry for the sPS clathrates with a series of n-alkanes from n-hexane to n-decane. Although the 010 spacing of the host sPS lattice expanded slightly on going from n-hexane to n-heptane, it decreased markedly at n-octane and then increased gradually with the chain length of guest n-alkane. The conformational change of guest n-alkane molecules was involved in this anomalous change in the 010 spacing. Majority of the n-hexane and n-heptane molecules took extended chain structures in the clathrates, whereas all longer n-alkanes took bent chain structures. The mean-square displacement of hydrogen atoms in the clathrates was estimated by quasielastic neutron scattering experiments. It was confirmed that the host lattice contraction suppressed thermal motion of the clathrate system.  相似文献   

6.
Cryptophanes bearing OCH(2)COOH groups in place of the methoxy groups represent a new class of xenon-carrier molecules soluble in water at biological pH. By using (1)H and (129)Xe NMR (thermally- and laser-polarized dissolved gas), the structural and dynamical behaviors of these host molecules as well as their interaction with xenon are studied. They are shown to exist in aqueous solution under different conformations in very slow exchange. A saddle form present for one of these conformations could explain the (1)H NMR spectra. Whereas the cryptophanes in such a conformation are unable to complex xenon, unprecedented high binding constants are found for cryptophanes in the other canonical crown-crown conformation. These host molecules could therefore be valuable candidates for biosensing using (129)Xe MRI.  相似文献   

7.
Porous liquids     
The aim of this article is to put forward the novel concept of porous liquids, or, more precisely, liquids with permanent microporosity. In contrast to the small, transient cavities that exist between the molecules of any liquid (here called "extrinsic" porosity), we suggest that a truly microporous liquid could exist if it had empty pores within the molecules of the liquid ("intrinsic" porosity). By using rigid host molecules with restricted access windows, any unwanted occupation of the pores could be prevented (i.e., the pores could be kept empty and available so that the liquid would be genuinely microporous). The liquid could have permanent, well-defined, empty pores capable of molecular recognition when exposed to other species (e.g., gases etc.). We stress that these phases are not the same as simple solutions of host species, in which any pores would normally be occupied by solvent molecules. In microporous liquids, any solvent molecules, if present, would be deliberately sterically excluded from the host cavities, to leave them readily accessible. Microporous liquids would be of considerable fundamental interest. They could combine properties of microporous solids, such as size- and shape-selective sorption and so forth, with the rapid mass transfer, fluidity and fast kinetics of liquids. Some synthetic approaches to these materials are discussed in this article. Also, whilst the overall concept of microporous liquids is new, literature is described which suggests that some examples have arguably already been reported, even if they have not previously been recognised and characterised in such terms.  相似文献   

8.
Localization of PdCl2 clusters supported on multi-wall carbon nanotubes (MWCNT) has been investigated using 129Xe NMR of adsorbed xenon. As-made MWCNTs with channels initially inaccessible for adsorption and ball-milled MWCNTs with the totally accessible internal surface were used as supports. The observed 129Xe NMR spectra were determined by the dynamics of xenon exchange between the aggregate pores and nanotube channels. No considerable changes of the 129Xe NMR spectrum with the concentration of supported PdCl2 were observed for the as-made MWCNT, while an additional resonance appeared for the ball-milled nanotubes. The 129Xe NMR experiments evidenced the supported species to be localized on the internal surface of the ball-milled MWCNT.  相似文献   

9.
It is well known that methane hydrate is aggregates of small and large hydrogen bonded water cavities (composed of 12 pentagonal faces of 20 water molecules, and 12 pentagonal and two hexagonal faces of 24 water molecules, respectively) where one methane molecule is encaged. We calculated the methane molecule in vacuum, the small and large cavities by ab initio MO method to clarify the electronic state. The proton of methane in the cavities is shown to form the weak hydrogen bond (O...H[bond]C) between methane and four water molecules, and the H-bond lengths and energies in the small and large cavities were estimated as (0.293 nm, 6.8 kJ/mol) and (0.309 nm, 5.2 kJ/mol), respectively. The calculated values of symmetric C[bond]H stretching frequencies and (13)C-NMR chemical shieldings of the methane in the two cluster cavities show good agreement with the experimental ones observed by Sum et al. and Ripmeester and coworker, respectively.  相似文献   

10.
A method is presented for detecting multiple xenon atoms in cavities of solid-state inclusion compounds using (129)Xe double quantum NMR spectroscopy. Double quantum filtered (129)Xe NMR spectra, performed on the xenon clathrate of Dianin's compound were obtained under high-resolution Magic-Angle Spinning (MAS) conditions, by recoupling the weak (129)Xe-(129)Xe dipole-dipole couplings that exist between xenon atoms in close spatial proximity. Because the (129)Xe-(129)Xe dipole-dipole couplings are generally weak due to dynamics of the atoms and to large internuclear separations, and since the (129)Xe Chemical Shift Anisotropy (CSA) tends to be relatively large, a very robust dipolar recoupling sequence was necessary, with the symmetry-based SR26 dipolar recoupling sequence proving appropriate. We have also attempted to measure the (129)Xe-(129)Xe dipole-dipole coupling constant between xenon atoms in the cavities of the xenon-Dianin's compound clathrate and have found that the dynamics of the xenon atoms (as investigated with molecular dynamics simulations) as well as (129)Xe multiple spin effects complicate the analysis. The double quantum NMR method is useful for peak assignment in (129)Xe NMR spectra because peaks arising from different types of absorption/inclusion sites or from different levels of occupancy of single sites can be distinguished. The method can also help resolve ambiguities in diffraction experiments concerning the order/disorder in a material.  相似文献   

11.
Zinc and cadmium hexacyanocobaltates(III) were prepared, and their porous networks were explored using 129Xe spectroscopy. The crystal structures of these two compounds are representative of porous hexacyanometallates, cubic (Fm-3m) for cadmium and rhombohedral (R-3c) for zinc. In the cubic structure, the porosity is related to systematic vacancies created from the elemental building block (i.e., the hexacyanometallate anion), whereas the rhombohedral (R-3c) structure is free of vacant sites but has tetrahedral coordination for the zinc atom, which leads to relatively large ellipsoidal pores communicated by elliptical windows. According to the Xe adsorption isotherms, these porous frameworks were found to be accessible to the Xe atom. The structure of the higher electric field gradient at the pore surface (Fm-3m) appears and is accompanied by a stronger guest-host interaction for the Xe atoms and a higher capacity for Xe sorption. For cadmium, the 129Xe NMR signal is typical of isotropic movement for the Xe atom, indicating that it remains trapped within a spherical cavity. From spectra recorded for different amounts of adsorbed Xe, the cavity diameter was estimated. For the zinc complex, 129Xe NMR spectra are asymmetric because of the Xe atom movement within an elongated cavity. The line-shape asymmetry changes when the Xe loading within the porous framework increases, which was ascribed to Xe-Xe interactions through the cavity windows. The Xe adsorption revealed additional structural information for the studied materials.  相似文献   

12.
We describe an NMR approach for detecting the interactions between phospholipid membranes and proteins, peptides, or small molecules. First, 1H-13C dipolar coupling profiles are obtained from hydrated lipid samples at natural isotope abundance using cross-polarization magic-angle spinning NMR methods. Principal component analysis of dipolar coupling profiles for synthetic lipid membranes in the presence of a range of biologically active additives reveals clusters that relate to different modes of interaction of the additives with the lipid bilayer. Finally, by representing profiles from multiple samples in the form of contour plots, it is possible to reveal statistically significant changes in dipolar couplings, which reflect perturbations in the lipid molecules at the membrane surface or within the hydrophobic interior.  相似文献   

13.
Variable-temperature hyperpolarized (HP) 129Xe NMR spectroscopy has been employed to characterize surface properties of mesoporous MCM-41 modified by silylation treatment. The characteristic chemical shifts responsible for Xe-surface interactions exhibit strong correlations with both the surface coverage and chain length of the grafted alkylsilanes. Consequently, the deshielding medium contribution due to individual alkyl ligand can be deduced based on the group contribution analysis revealing the potential use of HP 129Xe NMR for probing the surface properties of organic-functionalized porous materials.  相似文献   

14.
Gas hydrates are forms of ice stabilized by the presence of molecules of gas occupying cavities in the solid water lattice. There are two common forms: structure I and structure II. The mean free diameters of the two types of cavities in structure I are about 5.0 and 5.8 angstroms. Very small gas molecules such as Xe or H2S can occupy both. In the past it has been considered that gas molecules of larger diameter than 5.0 angstroms could not occupy the smaller cavities. It has now been shown through measurement of hydration numbers of CHClF2 (diameter about 5.4 angstroms) under various pressures at 0°, that some of the small cavities are filled. This state of affairs also exists for CH3Br. In structure II, the mean diameters of the two types of cavities are about 5.0 and 6.6 angstroms. Hydration numbers of SF6 (diameter about 5.8 angstroms) and CCl2F2 (about 6.2 angstromsm) show that nearly all of the large cavities but essentially none of the small cavities are occupied.  相似文献   

15.
This paper presents an exploratory study of the binding interactions of xenon with the surface of several different proteins in the solution and solid states using both conventional and hyperpolarized (129)Xe NMR. The generation of hyperpolarized (129)Xe by spin exchange optical pumping affords an enhancement by 3-4 orders of magnitude of its NMR signal. As a result, it is possible to observe Xe directly bound to the surface of micromolar quantities of lyophilized protein. The highly sensitive nature of the (129)Xe line shape and chemical shift are used as indicators for the conditions most likely to yield maximal dipolar contact between (129)Xe nuclei and nuclear spins situated on the protein. This is an intermediate step toward achieving the ultimate goal of NMR enhancement of the binding-site nuclei by polarization transfer from hyperpolarized (129)Xe. The hyperpolarized (129)Xe spectra resulting from exposure of four different proteins in the lyophilized, powdered form have been examined for evidence of binding. Each of the proteins, namely, metmyoglobin, methemoglobin, hen egg white lysozyme, and soybean lipoxygenase, yielded a distinctly different NMR line shape. With the exception of lysozyme, the proteins all possess a paramagnetic iron center which can be expected to rapidly relax the (129)Xe and produce a net shift in its resonance position if the noble gas atom occupies specific binding sites near the iron. At temperatures from 223 to 183 K, NMR signals were observed in the 0-40 ppm chemical shift range, relative to Xe in the gas phase. The signals broadened and shifted downfield as the temperature was reduced, indicating that Xe is exchanging between the gas phase and internal or external binding sites of the proteins. Additionally, conventional (129)Xe NMR studies of metmyoglobin and lipoxygenase in the solution state are presented. The temperature dependence of the chemical shift and line shape indicate exchange of Xe between adsorption sites on lipoxygenase and Xe in the solvent on the slow to intermediate exchange time scale. The NMR results are compared with N(2), Xe, and CH(4) gas adsorption isotherms. It is found that lipoxygenase is unique among the proteins studied in possessing a relatively high affinity for gas molecules, and in addition, demonstrating the most clearly resolved adsorbed (129)Xe NMR peak in the lyophilized state.  相似文献   

16.
The isotropic 129Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the 129Xe NMR CS. The 129Xe shielding constant was obtained by averaging the 129Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit–Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated 129Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental 129Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of 129Xe NMR parameters in different Xe atom guest–host systems. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
We have measured the desorption of seven small n-alkanes (C(N)H(2N+2), N=1-4,6,8,10) from the Pt(111) and C(0001) surfaces by temperature programed desorption. We compare these results to our recent study of the desorption kinetics of these molecules on MgO(100) [J. Chem. Phys. 122, 164708 (2005)]. There we showed an increase in the desorption preexponential factor by several orders of magnitude with increasing n-alkane chain length and a linear desorption energy scaling with a small y-intercept value. We suggest that the significant increase in desorption prefactor with chain length is not particular to the MgO(100) surface, but is a general effect for desorption of the small n-alkanes. This argument is supported by statistical mechanical arguments for the increase in the entropy gain of the molecules upon desorption. In this work, we demonstrate that this hypothesis holds true on both a metal surface and a graphite surface. We observe an increase in prefactor by five orders of magnitude over the range of n-alkane chain lengths studied here. On each surface, the desorption energies of the n-alkanes are found to increase linearly with the molecule chain length and have a small y-intercept value. Prior results of other groups have yielded a linear desorption energy scaling with chain length that has unphysically large y-intercept values. We demonstrate that by allowing the prefactor to increase according to our model, a reanalysis of their data resolves this y-intercept problem to some degree.  相似文献   

18.
Heterogeneous lipid membranes tuned by pH were evaluated at 37 degrees C in the form of PEGylated vesicles composed of lipid pairs with dipalmitoyl ( n = 16) and distearoyl ( n = 18) chain lengths. One lipid type was chosen to have the titratable moiety phosphatidic acid on its headgroup, and the other lipid type was chosen to have a phosphatidylcholine headgroup. The effect of pH on the formation of lipid heterogeneities and on membrane permeability was studied on vesicles composed of lipid pairs with matching and nonmatching chain lengths. The formation of lipid heterogeneities increases with decreasing pH in membranes composed of lipid pairs with either matching or nonmatching chain lengths. Increased permeability with decreasing pH was exhibited only by membranes composed of lipid pairs with nonmatching chain lengths. Permeability rates correlate strongly with the predicted extent of interfacial boundaries of heterogeneities, suggesting defective packing among nonmatching acyl chains of lipids. In heterogeneous mixtures with one lipid type in the fluid state ( n = 12), the dependence of membrane permeability on pH is weaker. In the presence of serum proteins, PEGylated gel-phase vesicles containing lipid pairs with nonmatching chain lengths exhibit faster release rates with decreasing pH compared to measured release rates in phosphate buffer, suggesting a second mechanism of formation of separated phases. PEGylated vesicles composed of lipid pairs with nonmatching chain lengths labeled with internalizing anti-HER2/neu antibodies that target overexpressed antigens on the surface of SKOV3-NMP2 ovarian cancer cells exhibit specific cancer cell targeting, followed by extensive internalization (more than 84% of bound vesicles) and fast release of contents intracellularly. These PEGylated vesicles composed of rigid membranes for long blood circulation times that exhibit pH-dependent release of contents intracellularly could become potent drug delivery carriers for the targeted therapy of solid tumors.  相似文献   

19.
Polyunsaturated lipids in cellular membranes are known to play key roles in such diverse biological processes as vision, neuronal signaling, and apoptosis. One hypothesis is that polyunsaturated lipids are involved in second messenger functions in biological signaling. Another current hypothesis affirms that the functional role of polyunsaturated lipids relies on their ability to modulate physical properties of the lipid bilayer. The present research has employed solid-state 2H NMR spectroscopy to acquire knowledge of the molecular organization and material properties of polyunsaturated lipid bilayers. We report measurements for a homologous series of mixed-chain phosphatidylcholines containing a perdeuterated, saturated acyl chain (n:0) at the sn-1 position, adjacent to docosahexaenoic acid (DHA, 22:6omega3) at the sn-2 position. Measurements have been performed on fluid (L(alpha))-state multilamellar dispersions as a function of temperature for saturated acyl chain lengths of n = 12, 14, 16, and 18 carbons. The saturated sn-1 chains are therefore used as an intrinsic probe with site-specific resolution of the polyunsaturated bilayer structure. The 2H NMR order parameters as a function of acyl position (order profiles) have been analyzed using a mean-torque potential model for the chain segments, and the results are discussed in comparison with the homologous series of disaturated lipid bilayers. At a given absolute temperature, as the sn-1 acyl length adjacent to the sn-2 DHA chain is greater, the order of the initial chain segments increases, whereas that of the end segments decreases, in marked contrast with the corresponding disaturated series. For the latter, the order of the end segments is practically constant with acyl length, thus revealing a universal chain packing profile. We find that the DHA-containing series, while more complex, is still characterized by a universal chain packing profile, which is shifted relative to the homologous saturated series. Moreover, we show how introduction of DHA chains translates the order profile along the saturated chains, making more disordered states accessible within the bilayer central region. As a result, the area per lipid headgroup is increased as compared to disaturated bilayers. The systematic analysis of the 2H NMR data provides a basis for studies of lipid interactions with integral membrane proteins, for instance in relation to characteristic biological functions of highly unsaturated lipid membranes.  相似文献   

20.
An extensive study has been made on a series of multifunctional mesoporous silica materials, prepared by introducing two different organoalkoxysilanes, namely 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEPTMS) and 3-cyanopropyltriethoxysilane (CPTES) during the base-catalyzed condensation of tetraethoxysilane (TEOS), using the variable-temperature (VT) hyperpolarized (HP) 129Xe NMR technique. VT HP-129Xe NMR chemical shift measurements of adsorbed xenon revealed that surface properties as well as functionality of these AEP/CP-functionalized microparticles (MP) could be controlled by varying the AEPTMS/CPTES ratio in the starting solution during synthesis. Additional chemical shift contribution due to Xe-moiety interactions was observed for monofunctional AEP-MP and CP-MP as well as for bifunctional AEP/CP-MP samples. In particular, unlike CP-MP that has a shorter organic backbone on the silica surface, the amino groups in the AEP chain tends to interact with the silanol groups on the silica surface causing backbone bending and hence formation of secondary pores in AEP-MP, as indicated by additional shoulder peak at lower field in the room-temperature 129Xe NMR spectrum. The exchange processes of xenon in different adsorption regions were also verified by 2D EXSY HP-129Xe NMR spectroscopy. It is also found that subsequent removal of functional moieties by calcination treatment tends to result in a more severe surface roughness on the pore walls in bifunctional samples compared to monofunctional ones. The effect of hydrophobicity/hydrophilicity of the organoalkoxysilanes on the formation, pore structure and surface property of these functionalized mesoporous silica materials are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号