首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polydentate ligands, 3-(2-aminocyclohexylamino)-2-(2-aminocyclohexyl aminomethyl) propionic acid (L1 ), 4,7,10-triazatridecanedinitrile trihydrochloride (L2 ), and 2,2′-(ethane-1,2-diyl) bis(methylazanediyl) diethanol (L3 ) were prepared and their structures investigated by FT-IR, NMR, and MS. The kinetics of complex formation between Cu(II) and L1, L2, and L3 were investigated in acidic aqueous solutions using the stopped-flow method. The stability constants of the complexes were determined by spectrophotometric titration (T?=?293?K, μ?=?0.1?mol?L?1 NaClO4), using a diode array UV-Vis spectrophotometer equipped with peristaltic pump and pH meter. The stability constants for the complexes were CuL1?>?CuL2?>?CuL3. Activation enthalpies (ΔH#) of these complexes were 55?kJ?mol?1 for CuL1, 61?kJ?mol?1 for CuL2, and 36?kJ?mol?1 for CuL3, respectively.  相似文献   

2.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

3.
Two new zinc(II) complexes, [ZnBr2L1] (I) and [ZnBr2L2] (II), where L1 is 2-[(2-isopropylaminoethylimino)methyl]-5-methoxyphenol and L2 is N,N-dimethyl-N′-(1-pyridin-2-yl-ethylidene)ethane-1,2-diamine, were prepared and characterized using elemental analysis, FT-IR spectroscopy, and X-ray single-crystal diffraction. In complex I, the Zn(II) atom is coordinated by one phenolic O and one imino N atoms of L1 and two Br atoms, forming a tetrahedral coordination geometry. In complex II, the Zn(II) atom is in a trigonal bipyramidal coordination geometry with the equatorial plane formed by the imino N atom of L2 and two Br atoms and with the two axial positions occupied by one pyridine N and one amino N atoms of L2. In the crystal structure of I, the mononuclear zinc complex molecules are linked through intermolecular N-H…O and N-H…Br hydrogen bonds, forming chains running along the y axis. The chains are further linked via intermolecular C-H…Br hydrogen bonds. In the crystal structure of II, the mononuclear zinc complex molecules are linked through intermolecular C-H…Br hydrogen bonds, forming a 3D network.  相似文献   

4.
Sodium and potassium complexes with 4′-(4‴-benzo-15-crown-5)methyloxy-2,2′:6′,2″-terpyridine (L1) and 4′-(4′-benzo-15-crown-5)oxy-2,2′:6′,2″-terpyridine (L2) and heteronuclear Na, K, Ca, and transition metal complexes with L1 were synthesized. The structure of the complexes was proposed on the basis of elemental analysis data, IR spectra, and the results of earlier X-ray diffraction studies of L2, [NaL1NCS], and [Na2{Cu(L1)2}(NCS)3]NCS · CH3CN.  相似文献   

5.
Two structurally similar centrosymmetric phenoxo-bridged dinuclear manganese(III) complexes, [Mn2(L1)2(N3)2] (1) and [Mn2(L2)2(NCS)2] (2), were prepared from the tetradentate bis-Schiff base ligands, N,N’-bis(salicylidene)propane-1,2-diamine (H2L1) and N,N’-bis(salicylidene)ethane-1,2-diamine (H2L2), respectively, in the presence of pseudohalides. The complexes have been characterized by FTIR, elemental analyses, and molar conductivity. Structures of the complexes have been confirmed by single-crystal X-ray determination. The bis-Schiff base ligands coordinate with Mn through their phenolate oxygen and imino nitrogen. Each Mn is an octahedral. The complexes showed that they exhibit high activity in catalytic olefin oxidation.  相似文献   

6.
Two polypyridyl ligands, 5-(4′-ethynylbenzo-15-crown-5)-2,2′-bipyridine (L1) and 3-bromo-8-(4′-ethynylbenzo-15-crown-5)-1,10-phenanthroline (L2), and their Ru(II) complexes [(bpy)2RuL](PF6)2 have been prepared and characterized. Both complexes exhibit metal-to-ligand charge transfer absorption at around 452 nm and emission at around 640 nm in MeCN solution. Electrochemical studies of the complexes reveal a Ru(II)-centered oxidation at around 1.31 V and three ligand-centered reductions. The binding ability of the complexes with Na+ has been investigated by UV/Vis absorption, emission, and electrochemical titrations. Addition of Na+ to MeCN solutions of both complexes results in a progressive enhancement of the emission, a red-shift of the UV/Vis absorption, and a progressive cathodic shift of the Ru(II)-centered E 1/2 couple. The stability constants for the 1:1 stoichiometry adducts of the complexes with Na+ have been obtained from the UV/Vis absorption titrations.  相似文献   

7.
The paper reports the synthesis and characterization of vanadium complexes of N,N′-(±)-trans-bis(2,4-dihydroxyacetophenone)-1,2-cyclohexanediamine (H2L1) and N,N′-(±)-trans-bis(2,4-dihyroxy-5-nitroacetophenone)-1,2-chyclohexanediamine (H2L2). All the complexes were characterized by elemental analysis, magnetic susceptibility measurements, infrared and electronic spectra, and thermogravimetric analysis. The X-ray patterns of the [VO(L1)] · H2O (I) and [VO(L2)] · H2O (II) complexes show the monoclinic system with the unit cell parameters a = 26.1352, b = 11.7149, c = 6.0401 β = 115.38° and a = 29.3787, b = 12.9398, c = 5.9175 β = 96.84°, respectively. The complexes I and II catalyze the oxidation of styrene in the presence of hydrogen peroxide.  相似文献   

8.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

9.
N,N′-bis(salicylidene)-1,3-propanediamine (LH2), N,N′-bis(salicylidene)-2,2′-dimethyl-1,3-propanediamine (LDMH2), N,N′-bis(salicylidene)-2-hydroxy-1,3-propanediamine (LOH3), N,N′-bis(2-hydroxyacetophenylidene)-1,3-propanediamine (LACH2) and N,N′-bis(2-hydroxyacetophenone)-2,2′-dimethyl-1,3-propanediamine (LACDMH2) were synthesized and reduced to their phenol-amine form in alcoholic media using NaBH4 (LHH2, LDMHH2, LOHHH2, LACHH2 and LACDMHH2). Heterodinuclear complexes were synthesized using Ni(II), Zn(II) and Cd(II) salts, according to the template method in DMF media. The complex structures were analyzed using elemental analysis, IR spectroscopy, and thermogravimetry. Suitable crystals of only one complex were obtained and its structure determined using X-ray diffraction, NiLACH·CdBr2·DMF2, space group orthorhombic, Pbca, a=20.249, b=14.881, c=20.565 ? and Z=8. The heterodinuclear complexes were seen to be of [Ni·ligand·MX2·DMF2] structure (ligand=LH2−, LDMH2−, LOHH2−, LACH2−, LACDMH2−, M=ZnII, CdII, X=Br, I). Thermogravimetric analysis showed irreversible bond breakage of the coordinatively bonded DMF molecules followed by decomposition at this temperature.  相似文献   

10.
The new multidentate Schiff-base (E)-6,6′-((1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-ylidene))bis(4-methyl-2-((E)(pyridine-2-ylmethylimino)methyl)phenol) H2L and its polymeric binuclear metal complexes with Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) are reported. The reaction of 2,6-diformyl-4-methyl-phenol with ethylenediamine in mole ratios of 2:1 gave the precursor 3,3′-(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1ylidene))bis(methan-1-yl-1-ylidene)bis(2-hydroxy-5-methylbenzaldehyde) W. Condensation of the precursor with 2-(amino-methyl)pyridine in mole ratios of 1:2 gave the new N6O2 multidentate Schiff-base ligand H2L. Upon complex formation, the ligand behaves as a dibasic octadentate species with the involvement of the nitrogen atoms of the pyridine groups in coordination for all complexes. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometries for Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Cd(II) and Hg(II) complexes of general formulae [Cr2III(L)Cl2]Cl2, [Ni2II(L)(H2O)2]Cl2 and [M2(L)Cl2] and five co-ordinate Zn(II) complex of general formula [Zn2II(L)]Cl2.  相似文献   

11.
Two ligands, N,N′-bis[1-(4-chlorophenyl)ethylidene]ethane-1,2-diamine (L1 ) and N,N′-bis- [1-(4-nitrophenyl)ethylidene]ethane-1,2-diamine (L2 ) and their corresponding copper(I) complexes, [Cu(L 1)2]ClO4 (1) and [Cu(L 2)2]ClO4 (2), have been synthesized and characterized by CHN analyses, 1H-NMR, IR, and UV–Vis spectroscopy. The crystal structures of L1 and [Cu(L 1)2]ClO4 (1) were determined from single crystal X-ray diffraction. L1 lies across a crystallographic inversion center and the C=N is approximately coplanar with the benzene ring and adopts E configuration. The coordination polyhedron about copper(I) in 1 is best described as a distorted tetrahedron. Quasireversible redox behavior is observed for the complexes.  相似文献   

12.
Reactions of 2-hydroxy-1-naphthaldehyde with 1,4-diaminobutane, 1,6-diaminohexane, 4,4′-methylenedianiline and its alkyl- and cycloalkyl-sybstituted derivatives, with 4,4′-sulfonyldianiline, 2,2′- and 4,4′-oxydianiline, 4,4′-(1,4-phenylenebisoxy)dianiline, 4,4′-[propane-2,2-diylbis(1,4-phenylenebisoxy)]dianiline, and p-terphenyl-4,4″-diamine afforded a series of the corresponding diimines that at treating with TiCl2(OPr-i)2 formed mono- and binuclear complexes of titanium(IV) dichloride with tetradentate ligands LTiCl2 and L2(TiCl2)2.  相似文献   

13.
A series of anionic five-coordinate binary oxorhenium(V) complexes with dithiolato ligands, Bu4N[ReO(L1)2] (1a), Bu4N[ReO(L2)2] (1b), and Bu4N[ReO(L3)2] (1c), and a series of neutral octahedral ternary oxorhenium(V) complexes of mixed dithiolato and bipyridine ligands, [ReO(L1)(bpy)Cl] (2a), [ReO(L2)(bpy)Cl] (2b), and [ReO(L3)(bpy)Cl] (2c) (where L1H2 = ethane-1,2-dithiol, L2H2 = propane-1,3-dithiol, L3H2 = toluene-3,4-dithiol, and bpy = 2,2′-bipyridine), were isolated and characterized by physicochemical and spectroscopic methods. The solid state structure of 1c was established by X-ray crystallography. All the mononuclear oxorhenium(V) complexes are diamagnetic. The redox behavior of all the complexes has been studied voltammetrically.  相似文献   

14.
Two multidentate ligands: N,N′-di-(propionic acid-2′-yl-)-2,9-di-aminomethylphenanthroline (L1) and N,N′-di-(3′-methylbutyric acid-2′-yl-)-2,9-di-amino-methylphenanthroline (L2) were synthesized and fully characterized by 1H NMR and elemental analysis. The binding ability of L1 and L2 to metal ions such as M(II) (M = Cu, Zn, Co and Ni) and Ln(III) (Ln = La, Nd, Sm, Eu, and Gd) has been investigated by potentiometric titration in aqueous solution and 0.1 mol dm−3KNO3 at 25.0 ± °C. In view of the structure of L1 and L2, mononuclear metal complexes can be formed in solution. The stability constants of binary complexes of ligands L1 and L2 with metal ions M(II) and Ln(III) have been determined respectively and further discussed.  相似文献   

15.
The reactions of AuIII, PtII and PdII complexes with 2-pyridinecarboxaldehyde (2CHO-py) have been examined in protic (H2O, MeOH, EtOH) and aprotic (DMF, CH2Cl2) solvents. Compounds in which the pyridine ligand is N-coordinated, either in the original aldehydic form or in a new form derived from addition of one or two protic molecules, have been isolated, namely: [Au(2CHO-py · H2O)Cl3], [Au(2CHO-py · MeOH)Cl3], [Au(2CHO-py · 2EtOH)Cl3], cis-[Pt(2CHO-py)2Cl2], trans-[Pd(2CHO-py)2Cl2], trans-[Pt(dmso)(2CHO-py)Cl2], [Pt{C5H4N-(CH2SMe)}Cl(2CHO-py)](ClO4), [Pt(terpy)(2CHOpy)](ClO4)2, [Pt(terpy)(2CHO-py · H2O)](ClO4)2 (terpy = 2,2′:6′,2′′-terpyridine). 1H-n.m.r. experiments show that the addition of the protic molecule(s) to the PtII and PdII complexes is reversible. The effects of the nature of the metal ion and the ancillary ligands as well as of the total charge of the complexes on the relative stability of the addition products are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Two long-chain multidentate ligands: 2,9-di-(n-2′,5′,8′-triazanonyl)-1,10-phenanthroline (L1) and 2,9-di-(n-4′,7′,10′-triazaundecyl)-1,10-phenanthroline (L2) were synthesized. The hydrolytic kinetics of p-nitrophenyl phosphate (NPP) catalyzed by complexes of L1 and L2 with La(III) and Gd(III) have been studied in aqueous solution at 298 K, I = 0.10 mol · dm−3 KNO3 at pH 7.5–9.1, respectively. The study shows that the catalytic effect of GdL1 was the best in the four complexes for hydrolysis of NPP. Its kLnLH−1, k LnL and pK a are 0.0127 mol−1 dm3 s−1, 0.000022 mol−1 dm3 s−1 and 8.90, respectively. This paper expounds the result from the structure of the ligands and the properties of the metal ions, and deduces the catalysis mechanism.  相似文献   

17.
The substitution kinetics of the complexes [Pt(terpy)Cl]Cl·2H2O (PtL1), [Pt(tBu3terpy)Cl]ClO4 (PtL2), [Pt{4′-(2′′′-CH3-Ph)terpy}Cl]BF4 (PtL3), [Pt{4′-(2′′′-CF3-Ph)terpy}Cl]CF3SO3 (PtL4), [Pt{4′-(2′′′-CF3-Ph)-6-Ph-bipy}Cl] (PtL5) and [Pt{4′-(2′′′-CH3-Ph)-6-2′′-pyrazinyl-2,2′-bipy}Cl]CF3SO3 (PtL6) with the nucleophiles imidazole (Im), 1-methylimidazole (MIm), 1,2-dimethylimidazole (DIm), pyrazole (Pyz) and 1,2,4-triazole (Trz) were investigated in a methanolic solution of constant ionic strength. Substitution of the chloride ligand from the metal complexes by the nucleophiles was investigated as a function of nucleophile concentration and temperature under pseudo first-order conditions using UV/Visible and stopped-flow spectrophotometric techniques. The reactions follow the rate law k\textobs = k2 [ \textNu ] + k - 2 k_{\text{obs}} = k_{2} \left[ {\text{Nu}} \right] + k_{ - 2} . The results indicate that changing the nature or distance of influence of the substituents on the terpy moiety affects the π-back-donation ability of the chelate. This in turn controls the electrophilicity of the metal centre and hence its reactivity. Electron-donating groups decrease the reactivity of the metal centre, while electron-withdrawing groups increase the reactivity. Placing a strong σ-donor cis to the leaving group greatly decreases the reactivity of the complex, while the addition of a good π-acceptor group significantly enhances the reactivity. The results indicate that the metal is activated differently by changing the surrounding atoms even though they are part of a conjugated system. It is also evident that substituents in the cis position activate the metal centre differently to those in the trans position. The kinetic results are supported by DFT calculations, which show that the metal centre is less electrophilic when a strong σ-donor is cis to the leaving group and more electrophilic when a good π-acceptor group is part of the ring moiety. The temperature dependence studies support an associative mode of activation. An X-ray crystal structure of Pyz bound to PtL3 was obtained and confirmed the results of the DFT calculations as to the preferred N-atom as a binding site.  相似文献   

18.
Eight-coordinate chiral lanthanide complexes [Eu(dbm)3L RR ] (1), [Eu(dbm)3L SS ] (2) and [Tb(dbm)3L RR ] (3) (L RR /L SS = (-)-/(+)-4,5-pineno-2,2′-bipyridine, Hdbm = dibenzoylmethane) were synthesized stereoselectively, which were characterized by UV-vis, CD spectra and X-ray single-crystal diffraction. The mirror-image structure features of complexes 1 and 2 were obtained by combination of the solid-state CD spectra and the crystal structure analysis. After further comparison with the solid-state CD spectra of six-coordinate and seven-coordinate metal complexes containing β-diketone ligands, the CD spectra-absolute configuration correlation rule for the eight-coordinate β-diketonate lanthanide complexes was proposed through the exciton chirality method for the first time. The Δ or Λ absolute configurations of complexes 1–3 with the distorted square antiprism geometry were confirmed by the X-ray single-crystal analysis.  相似文献   

19.
A new tridentate pyridyl Schiff base, N-isopropyl-N′-(1-pyridin-2-ylethylidene)ethane-1,2-diamine (L), was used to synthesize two dinuclear cadmium(II) complexes, [Cd2L2(μ 1,1-N3)2(N3)2] (1) and [Cd2L2(μ 1,3-NCS)2(NCS)2] (2). X-ray single crystal structure determination reveals that in both centrosymmetric complexes, the Cd atom is in a distorted octahedral coordination. In the crystal structures of 1 and 2, the dinuclear cadmium(II) complex molecules are linked, respectively, through intermolecular N–H···N and N–H···S hydrogen bonds to form infinite 1D chains. The preliminary fluorescence properties of the complexes were investigated.  相似文献   

20.
The reaction of 2,2′-di(2-hydroxybenzaliminoethyl) disulfide (H2L1) and 2-[(2-thioethyl)iminomethyl]phenol (H2L2) with MCl2·xH2O (M = Co, Ni, Cu) afforded the [M2(L1)Cl2] and [M(L2)]2 complexes, respectively. Their structures were determined by the data of electronic and IR spectroscopy and PM3 quantum chemical calculations. The H2L1 ligand and the complexes were studied by electrochemistry (CV and using a rotating disk electrode). The primary electronic changes are localized on the ligand fragment upon the electrochemical oxidation and reduction of the complexes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1325–1330, July, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号