首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAHs. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400 cm-1 (between about 1340 and 1500 cm-1) and near 1180 cm-1, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family.  相似文献   

2.
The mid-infrared spectra of the polycyclic aromatic hydrocarbon (PAH) cations of the tetracyclic isomers chrysene (C18H12+) and 1,2-benzanthracene (C18H12+) are presented. As with previous PAH cations studied to date, the CC stretching and CH in-plane bending mode absorptions are about an order of magnitude stronger than the aromatic CH out-of-plane bending absorptions and nearly 2 orders of magnitude more intense than the corresponding bands in the neutral molecule. The CH bands arising from the out-of-plane bends in the cation are slightly weaker than the corresponding bands in the neutral species. The strongest cation bands of these species fall between 1300 and 1330 cm-1, close to the peak of the most intense interstellar emission feature in HII regions and reflection nebulae. A strong PAH cation band at slightly higher frequency than 1300 cm-1 may be associated with an asymmetric CC stretching vibration involving rings adjacent to the kink in the chain of aromatic rings.  相似文献   

3.
Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene:phenanthrene, pyrene, benzo[e]pyrene, benzo[ghi]perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d10, and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo[ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) have long been postulated as constituents of the interstellar gas and circumstellar disks. Observational infrared emission spectra have been plausibly interpreted in support of this hypothesis, but the small (or zero) dipole moments of planar, unsubstituted PAHs preclude their definitive radio astronomical identification. Polar PAHs, such as corannulene, thus represent important targets for radio astronomy because they offer the possibilities of confirming the existence of PAHs in space and revealing new insight into the chemistry of the interstellar medium. Toward this objective, the high-resolution rotational spectrum of corannulene has been obtained by Fourier transform microwave spectroscopy, and the dipole moment (2.07 D) of this exceptionally polar PAH has been measured by exploiting the Stark effect.  相似文献   

5.
Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects on the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a 'closed'-shell electronic configuration. The calculated spectra of circumcoronene, C54H18, in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(-1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.  相似文献   

6.
The formation mechanism of polycyclic aromatic hydrocarbon (PAH) molecules in interstellar and circumstellar environments is not well understood although the presence of these molecules is widely accepted. In this paper, addition and aromatization reactions of acetylene over astrophysically relevant nesosilicate particles are reported. Gas-phase PAHs produced from exposure of acetylene gas to crystalline silicates using pulsed supersonic jet expansion (SJE) conditions were detected by time-of-flight mass spectrometry (TOF-MS). The PAHs produced were further confirmed in a separate experiment using a continuous flow fixed-bed reactor in which acetylene was introduced at atmospheric pressure. The gas-phase effluent and solutions of the carbonaceous compounds deposited on the nesosilicate particles were analyzed using gas chromatography-mass spectrometry (GC-MS). A mechanism for PAH formation is proposed in which the Mg(2+) ions in the nesosilicate particles act as Lewis acid sites for the acetylene reactions. Our studies indicate that the formation of PAHs in mixed-chemistry astrophysical environments could arise from acetylene interacting with olivine nano-particles. These nesosilicate particles are capable of providing catalytic centres for adsorption and activation of acetylene molecules that are present in the circumstellar environments of mass-losing carbon stars. The structure and physical properties of the particles were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and high-resolution transmission electron microscopy (HRTEM) techniques.  相似文献   

7.
We report the first experimental mid-infrared (700-1600 cm (-1)) multiple-photon dissociation (IRMPD) spectra of [XFeC 24H 12] (+) (X = C 5H 5 or Cp, C 5(CH 3) 5 or Cp*) complexes in the gas phase obtained using the free electron laser for infrared experiments. The experimental results are complemented with theoretical infrared (IR) absorption spectra calculated with methods based on density functional theory. The isomers in which the XFe unit is coordinated to an outer ring of C 24H 12 (+) (Out isomers) were calculated to be the most stable ones. From the comparison between the experimental and calculated spectra, we could derive that, (i) for [CpFeC 24H 12] (+) complexes, the (1)A Out isomer appears to be the best candidate to be formed in the experiment but the presence of the (1)A In higher energy isomer in minor abundance is also plausible; and (ii) for [Cp*FeC 24H 12] (+) complexes, the three calculated Out isomers of similar energy are likely to be present simultaneously, in qualitative agreement with the observed dissociation patterns. This study also emphasizes the threshold effect in the IRMPD spectrum below which IR bands cannot be observed and evidence strong mode coupling effects in the [XFeC 24H 12] (+) species. The effect of the coordination of Fe in weakening the bands of C 24H 12 (+) in the 1000-1600 cm (-1) region is confirmed, which is of interest to search for such complexes in interstellar environments.  相似文献   

8.
As part of our long-term program to test the diffuse interstellar band-polycyclic aromatic hydrocarbon hypothesis, we have investigated the S(1)<--S(0) electronic transition of neutral perylene (C(20)H(12)) in a combined experimental and theoretical study. Jet-cooled perylene was prepared with a pulsed discharge slit nozzle and detected by cavity ring-down spectroscopy. A number of vibronic features were observed in the 24 000-24 900 cm(-1) spectral range. Density functional and ab initio calculations were performed to determine the geometries, harmonic vibrational frequencies, and normal coordinates of both the S(0) and S(1) electronic states. A rotational temperature of 52+/-5 K was derived from a rotational contour analysis of the vibronic band associated with the 0-0 transition. A Franck-Condon treatment was carried out to calculate the vibronic spectrum of the S(1)<--S(0) transition. A good agreement was found between the calculated and the experimental spectra. A vibrational assignment is proposed and six normal modes are identified. The contribution of neutral compact polycyclic aromatic hydrocarbons to the diffuse interstellar bands is briefly discussed.  相似文献   

9.
With nearly 200 molecules detected in interstellar and circumstellar environments, the identification of the biologically relevant α‐keto carboxylic acid, glyoxylic acid (HCOCOOH), is still elusive. Herein, the formation of glyoxylic acid via cosmic‐ray driven, non‐equilibrium chemistry in polar interstellar ices of carbon monoxide (CO) and water (H2O) at 5 K via barrierless recombination of formyl (HCO) and hydroxycarbonyl radicals (HOCO) is reported. In temperature‐programmed desorption experiments, the subliming neutral molecules were selectively photoionized and identified based on the ionization energy and distinct mass‐to‐charge ratios in combination with isotopically labeled experiments exploiting reflectron time‐of‐flight mass spectrometry. These studies unravel a key reaction path to glyoxylic acid, an organic molecule formed in interstellar ices before subliming in star‐forming regions like SgrB2(N), thus providing a critical entry point to prebiotic organic synthesis.  相似文献   

10.
Neutral and anionic carbon clusters have been generated via a laser-induced graphite-based plasma and deposited in a solid argon matrix. Anionic clusters were formed from neutral clusters by using crossed electron/carbon cluster beams. Thermal annealing (to 36 K) resulted in the aggregation of the smaller carbon species, leading to the formation of long chain neutral and anionic clusters. Spectroscopic measurements in the ultraviolet, visible, near-infrared and infrared regions revealed a series of bands attributable to a homologous set of odd-numbered C5-C29 neutral clusters and even-numbered C6(-)-C36- anionic clusters. Good agreement is found for the band positions of carbon chains containing odd C15-C21 neutrals and even C6(-)-C22- anions, with species previously identified by Maier and coworkers using mass selection or laser vaporization, followed by neon matrix isolation. Resonance Raman frequencies for the neutral C17, C21 and C23 species are shown to be consistent with the above attributions. Density functional theory calculations agree well with the observed bands. It is found that certain low frequency Raman stretching frequencies decrease in a predictable way with increasing chain length. Comparison of the 0(0)0 absorption transitions of the even C18(-)-C36- anionic clusters with the 'unidentified' infrared (UIR) interstellar emission bands suggests that the electronic emission from specific long chain carbon anions may contribute to the some of the UIR bands.  相似文献   

11.
It is generally accepted that Raman spectroscopic investigations of gas hydrates provide vital information regarding the structure of the hydrate, hydrate composition and cage occupancies, but most research is focused on the vibrational spectra of the guest molecules. We show that the shape and position of the Raman signals of the host molecules (H(2)O) also contain useful additional information. In this study, Raman spectra (200-4000 cm(-1)) of (mixed) gas hydrates with variable compositions and different structures are presented. The bands in the OH stretching region (3000-3800 cm(-1)), the O-H bending region (1600-1700 cm(-1)) and the O-O hydrogen bonded stretching region (100-400 cm(-1)) are compared with the corresponding bands in Raman spectra of ice Ih and liquid water. The interpretation of the differences and similarities with respect to the crystal structure and possible interactions between guest and host molecules are presented.  相似文献   

12.
Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440cm(-1) is assigned to the nu(3) CO(3)(2-) antisymmetric stretching vibration. An additional band is resolved at 1335cm(-1). An intense sharp Raman band at 1092cm(-1) is assigned to the CO(3)(2-) symmetric stretching vibration. Infrared emission spectra show a broad antisymmetric band at 1442cm(-1) shifting to lower wavenumbers with thermal treatment. A band observed at 870cm(-1) with a band of lesser intensity at 842cm(-1) shifts to higher wavenumbers upon thermal treatment and is observed at 865cm(-1) at 400 degrees C and is assigned to the CO(3)(2-)nu(2) mode. No nu(2) bending modes are observed in the Raman spectra for smithsonite. The band at 746cm(-1) shifts to 743cm(-1) at 400 degrees C and is attributed to the CO(3)(2-)nu(4) in phase bending modes. Two infrared bands at 744 and around 729cm(-1) are assigned to the nu(4) in phase bending mode. Multiple bands may be attributed to the structural distortion ZnO(6) octahedron. This structural distortion is brought about by the substitution of Zn by some other cation. A number of bands at 2499, 2597, 2858, 2954 and 2991cm(-1) in both the IE and infrared spectra are attributed to combination bands.  相似文献   

13.
Sulfated zirconia (SZ) and sulfated zirconia promoted with 2 wt % manganese (MnSZ) or iron (FeSZ), all active in n-butane isomerization, were investigated using diffuse reflectance Fourier transform IR spectroscopy (DRIFTS). By adsorption of H(2) at 77 K or of n-butane at room temperature, it was found that the promoters neither enhance the Lewis nor the Br?nsted acid strength. SZ and promoted SZ do not exhibit higher acid strength than zeolites. In a batch experiment using 70 hPa of H(2), SZ did not react at 473 K. Reaction of H(2) with MnSZ produced water (band at 5242 cm(-1)) and a decrease in the sulfate groups (multiple bands). Heating of SZ in 10 hPa n-butane to 573 K caused total reduction of sulfate to H(2)S (2583, 2570 cm(-1)) and partial and total oxidation of butane to olefinic species (3062 cm(-1)), CO(2), and water. MnSZ and FeSZ reacted with n-butane already at 373 K; products of skeletal isomerization (methyne CH vibration at 2910 cm(-1)) were detected and sulfate groups were consumed. Rather than increasing the acidity, the promoters enhance the oxidation potential of sulfate and facilitate alkane activation via oxidative dehydrogenation.  相似文献   

14.
Gas phase C 6H 7 (+) and C 7H 9 (+) ions are studied with infrared photodissociation spectroscopy (IRPD) and the method of rare gas tagging. The ions are produced in a pulsed electric discharge supersonic expansion source from benzene or toluene precursors. We observe exclusively the formation of either the C 2 v benzenium ion (protonated benzene) or the para isomer of the toluenium ion (protonated toluene). The infrared spectral signatures associated with each ion are established between 750 and 3400 cm (-1). Comparing the gas phase spectrum of the benzenium ion to the spectrum obtained in a superacid matrix [ Perkampus, H. H.; Baumgarten, E. Angew. Chem. Int. Ed. 1964, 3, 776 ], we find that the C 2 v structure of the gas phase species is minimally affected by the matrix environment. An intense band near 1610 cm (-1) is observed for both ions and is indicative of the allylic pi-electron density associated with the six membered ring in these systems. This spectral signature, also observed for alkyl substituted benzenium ions and protonated naphthalene, compares favorably with the interstellar, unidentified infrared emission band near 6.2 microm (1613 cm (-1)).  相似文献   

15.
Theoretical and experimental spectroscopic studies have underlined the contribution of large PAHs towards the astrophysical mid-infrared emission bands. Quantum chemical study of eight large PAHs using density functional theory approach is reported along with their infrared spectra. Systematic variation of bands with PAH size is noted and a better agreement with the observed astrophysical bands is obtained. Compared to small and medium sized PAHs there is substantial C-H stretch intensity in the cation spectra. This is attributed to smaller change in charge on the hydrogens upon ionization. For the C-H out-of-plane mode large PAHs correlate well with observed features on the shorter wavelength side of the 11.2 microm band. Presence of two sub-components of the broad 7.7 microm band in large PAHs compares very well with the corresponding astrophysical band and point to the abundance of large PAH cations in interstellar environments. The data presented here may be used for a more detailed study on the profile variations accompanying the mid-IR bands in various interstellar environments.  相似文献   

16.
Ionized polycyclic aromatic hydrocarbons (PAHs) are thought to constitute an important component of the interstellar medium. Despite this fact, the infrared spectroscopic properties of ionized PAHs are almost unknown. The results we present here derive from our ongoing spectroscopic study of matrix isolated PAH ions and include the spectra of the naphthalene cation, C10H8+, and its fully deuterated analog, C10D8+, between 4000 and 200 cm-1. Ions are generated in situ Lyman-alpha photoionization of the neutral precursor. Bands of the C10H8+ ion are observed at 1525.7, 1518.8, 1400.9, 1218.0, 1216.9, 1214.9, 1023.2, and 758.7 cm-1. Positions and relative intensities of these bands agree well with those in the available literature. The 758.7 cm-1 band has not previously been reported. C10D8+ ion bands appear at 1466.2, 1463.8, 1379.4, 1373.8, 1077.3, 1075.4, and 1063.1 cm-1. Compared to the analogous modes in the neutral molecule, the intensities of the cation's CC modes are enhanced by an order of magnitude, while CH modes are depressed by this same factor. Integrated absorption intensities are calculated for the strongest bands of C10H8 and for the observed bands of C10H8+. Absolute intensities derived for the naphthalene cation differ from earlier experimental results by a factor of approximately 50, and from theoretical predictions by a factor of approximately 300. Reasons for these discrepancies and from the astronomical implications of PAH cation spectra are discussed.  相似文献   

17.
Infrared transmission and emission spectroscopy were used to analyze the difference in structure and thermal behavior of two Chinese palygorskites. The position of the main bands identified in the infrared spectra of the palygorskites studied is similar for these two Chinese samples, but there are some differences in their intensity, which is significant. This discrepancy is attributed to the existence of impurities and the geological environments in different regions. The infrared emission spectra clearly show the structural changes and dehydroxylation of the palygorskites when the temperature is raised. The dehydration of the palygorskites is followed by the loss of intensity of the OH stretching vibration bands in the region of 3600-3200 cm(-1). Dehydroxylation is followed by the decrease in intensity in the bands between 3700 and 3550 cm(-1). Dehydration of pure palygorskite was completed by 600°C. Partial loss of coordinated water was observed at 400°C. Infrared emission spectroscopy is an effective method to determine the stability of the mineral.  相似文献   

18.
Absorption infrared spectra have been computed for a variety of polycyclic aromatic hydrocarbon molecules of the pyrene family, taking into account anharmonicity and temperature effects, rovibrational quantization, and couplings. The energy levels are described by a second-order perturbative expansion of the rovibrational Hamiltonian in the vibrational and rotational quantum numbers, as relevant for a symmetric-top molecule, with ingredients obtained from quantum chemistry calculations. Multicanonical Monte Carlo simulations are carried out to compute bidimensional IR intensity histograms as a function of total energy and vibrational frequency, which then provide the absorption spectrum at arbitrary temperatures via a Laplace transformation. The main spectral features analyzed for neutral, anionic, and cationic pyrene indicate a strong dependence on temperature, in agreement with existing laboratory experiments, and a significant contribution of rotational degrees of freedom to the overall broadenings. The spectral shifts and broadenings reveal some sensitivity of anharmonicities to the charge and protonation states and, in the case of protonated pyrene and pyrenyl cation, on possible isomers and between aromatic and aliphatic C-H bands. Implications of the present work to the general issue of interstellar emission features are discussed.  相似文献   

19.
Copper carbonyl cations of the form Cu(CO)(n)(+) (n = 1-8) are produced in a molecular beam via laser vaporization in a pulsed nozzle source. Mass-selected infrared photodissociation spectroscopy in the carbonyl stretching region is used to study these ions and their argon "tagged" analogues. The geometries and electronic states of these complexes are determined by the number of infrared-active bands, their frequency positions, and their relative intensities compared to the predictions of theory. Cu(CO)(4)(+) has a completed coordination sphere, consistent with its expected 18-electron stability. It also has a tetrahedral structure similar to that of its neutral isoelectronic analog Ni(CO)(4). The carbonyl stretch in Cu(CO)(4)(+) (2198 cm(-1)) is blue-shifted with respect to the free CO vibration (2143 cm(-1)), providing evidence that this is a "non-classical" metal carbonyl.  相似文献   

20.
In this study, wood samples were exposed to light irradiations (direct sunlight, xenon lamp, mercury vapour lamp) and thermal treatments were carried out in dry- and in humid conditions at 90°C. One part of the samples was covered by an aluminium plate during light irradiation. The samples under the aluminium plate also suffered considerable chemical changes, monitored by infrared technique and colour measurement. The sunlight produced greater colour change under the aluminium plate than the artificial light sources. During light irradiation, the carbonyl band having two maximum at 1700 and 1,746 cm(-1) increased and the peak of the aromatic skeletal vibration arising from lignin (1,510 cm(-1)) decreased together with the guaiacyl vibrations at 1,275 cm(-1). There was absorption decrease at 1,174 cm(-1) because of the ether band splitting. Under the covered surface only the ether band at 1,174 cm(-1) decreased and one carbonyl band increased with a maximum at 1,715 cm(-1). Degradation of lignin was negligible for the covered surface. Colour change generated by thermal degradation was much greater in humid condition than in dry condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号