首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
采用自旋极化密度泛函理论系统研究了Ni掺杂ZnO纳米线的电子结构、磁学和光学性质.磁学性质计算结果显示六种Ni掺杂ZnO纳米线的磁性耦合体系出现了铁磁(FM)、反铁磁(AFM)和顺磁(PM)二种不同的耦合状态.能量计算结果表明Ni原子在纳米线外表面沿[0001]方向替代Zn原子时能量最低,体系的AFM耦合相对稳定,AFM体系表现出金属性.态密度计算结果显示FM耦合在费米能级附近出现了明显的自旋极化现象,发生了强烈的Ni 3d和O 2p杂化效应,掺杂产生的磁矩主要来源于Ni 3d未成对轨道电子和部分O 2p轨道电子的贡献,FM耦合表现出半金属性.另外,光学性质计算结果显示Ni掺杂ZnO纳米线的远紫外吸收峰发生了红移现象,而380 nm附近的近紫外吸收峰发生了明显的蓝移现象,在整个紫外区都表现出了优异的发光性能.以上结果表明Ni掺杂ZnO纳米线是一种很有前途的磁光电子材料.  相似文献   

2.
采用高分子络合软模板法利用高分子络合和低温氧化烧结反应,在硅衬底上自组装生长出顶面平滑具有六角柱形结构的ZnO纳米线,并基于此聚丙烯酰胺/ZnO纳米线体系构筑了聚合物基ZnO纳米线发光二极管器件,在相对低的阈值电压下实现了常温常压下电场驱动的蓝色发射光,并且其发光颜色可由其应用的激励电压方便地调控.几乎垂直排列的ZnO纳米线/高分子薄膜在器件中被作为发射层.该方法使用聚合物作为LED器件的粘结剂和发光层的分散介质,稳定了硅衬底上埋置在聚合物薄膜中的ZnO纳米线准阵列并对ZnO纳米晶的表面起钝化作用,防止发光猝灭.结果表明,新技术是一种低成本制备ZnO基紫外/蓝色发光材料的工艺,并且减少了以往工艺中要求ZnO薄膜p型掺杂的麻烦.  相似文献   

3.
利用包括磁控溅射和热氧化的两步法在Si(111)衬底上制备了Sn掺杂ZnO纳米针.首先用磁控溅射法在Si(111)衬底上制备Sn:Zn薄膜,然后在650℃的Ar气氛中对薄膜进行热氧化,制备出Sn掺杂ZnO纳米针.样品的结构、成分和光学性质采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、能量散射X射线(EDX)谱和光致发光(PL)光谱等技术手段进行分析.结果表明,制备的样品为具有六方纤锌矿结构的单晶Sn掺杂ZnO纳米针,Sn掺杂量为2.5%(x,原子比),底部和头部直径分别为200-500 nm和40 nm,长度为1-3μm,结晶质量较高.室温光致发光光谱显示紫外发光峰比纯ZnO的发光峰稍有蓝移,这可归因于能谱分析中探测到的Sn的影响.基于本实验的实际条件,简单探讨了Sn掺杂ZnO纳米针的生长机制.  相似文献   

4.
以Zn粉和S粉为原料,Au纳米颗粒为催化剂,采用低温(450℃)化学气相沉积法(CVD),在Si(100)衬底上制备了未掺杂和Mn2+掺杂的ZnS微纳米结构.利用X射线衍射仪(XRD)、能量弥散X射线谱(EDS)、场发射扫描电子显微镜(SEM)和光致发光光谱(PL)等测试手段对样品的结构、成分、形貌和发光性能进行了分析.结果表明,所得ZnS样品均为六方纤锌矿结构,未掺杂的ZnS为微纳米球,在波长为450和463 nm处有2个发光强度较大的蓝光峰;Mn2+掺杂ZnS为纳米线,在波长479和587 nm处分别有1个微弱的蓝光峰和1个强度相对较大的红光峰.此外,还对ZnS微纳米结构的形成过程进行了探讨,并提出了可能的形成机理.  相似文献   

5.
ZnO纳米线形态对其光致发光性能的影响   总被引:1,自引:0,他引:1  
黄新民  任鑫  朱泓 《应用化学》2007,24(3):353-356
以多孔氧化铝膜为模板,电化学沉积出Zn纳米线,再通过高温氧化得到ZnO纳米线阵列。通过改变制备多孔氧化铝模板的工艺参数来改变模板纳米孔径,进而改变ZnO纳米线的直径,得到不同形态的ZnO纳米线阵列。应用X射线衍射仪、透射电子显微镜测试技术表征了ZnO纳米线的结构与形貌。结果发现,X射线衍射时会出现随ZnO纳米线直径增大衍射峰增多和增强的现象。采用荧光光谱仪测试样品的光致发光性能,通过Gaussian原理对谱峰的拟合分析了ZnO纳米线形态对其光致发光光谱的影响。结果表明,随着纳米线直径从30nm至60nm依次增大,其结晶性和化学计量比逐渐变好。近紫外区和蓝光区的发射峰随着纳米线直径的增大而蓝移,而纳米线直径为60nm的样品则出现随直径增大而红移的现象。结果可见,直径在55~60nm间的某点将是ZnO纳米线的结构和光致发光性能变化的临界点。  相似文献   

6.
Sn掺杂ZnO半导体纳米带的制备、结构和性能   总被引:7,自引:0,他引:7  
在无催化剂的条件下, 利用碳热还原反应气相沉积法制备出了高产率单晶Sn掺杂ZnO纳米带. XRD和TEM研究表明纳米带为结晶完好的纤锌矿结构, 生长方向沿[0001], EDS分析表明纳米带中Sn元素含量约为1.9%. 室温光致发光谱(PL)显示掺锡氧化锌纳米带存在强的绿光发射峰和较弱的紫外发射峰, 谱峰峰位中心分别位于494.8 nm和398.4 nm处, 并对发光机制进行了分析. 这种掺杂纳米带有望作为理想的结构单元应用于纳米尺度光电器件领域.  相似文献   

7.
高利聪  贺英  周利寅 《化学学报》2008,66(14):1713-1719
采用独特的高分子溶液自组装生长方法, 在经化学镀预处理的基底上利用高分子溶液的网络络合效应制备了ZnO纳米线. 通过场发射扫描电子显微镜(FE-SEM), X射线能谱仪(EDS)等对样品的表面形貌及组成进行了观测表征. 结果显示, 纳米线直径约50 nm, 长度达到了数微米; 产物Zn、O化学计量比接近1∶1. 通过Si基底经化学镀工艺预处理和未经化学镀预处理对ZnO纳米结构、紫外吸收和PL性能影响的分析比较, 发现了化学镀Ni对于纳米线长度和直径尺寸的控制更为有效; 在PL图谱中, 经化学镀预处理的样品在中心波长385 nm出现了由激子碰撞复合所形成的近紫外发光峰. 进一步还分析了在不同的pH值和反应时间下样品的紫外吸收和光致发光性能. 通过以上实验, 讨论并提出了ZnO纳米线的生长机理及过程, 认为纳米线的生长是在化学镀催化剂和高分子双重作用下进行的.  相似文献   

8.
利用脉冲激光沉积(PLD)法在Si(111)衬底上制备了ZnO:Eu~(3+),Li+薄膜,分别通过XRD谱和光致发光(PL)谱测试研究了氧分压不同时薄膜结构和发光性质。XRD谱研究表明,所有样品均仅出现ZnO基质的(002)衍射峰,说明Eu~(3+)已进入ZnO基质晶格,没有单独形成结晶氧化物。PL谱研究表明,当用325 nm的光激发样品时,样品的发光仅由ZnO基质的紫外发光和绿光发射组成,没有出现稀土Eu~(3+)的特征发光峰。当用395 nm的光激发样品时,在594和613 nm处出现两个明显的Eu~(3+)特征发光峰,分别属于Eu~(3+)的磁偶极跃迁(~5D_0→~7F_1)和电偶极跃迁(~5D_0→~7F_2),而且随着氧压的增加,594 nm处的发光峰强度变化不大,但613 nm处的发光峰强度明显增强。  相似文献   

9.
将表面覆盖有ZnCl2溶液的锌片加热到400 ℃反应1 h, 在锌片上生长出了ZnO亚微米棒阵列. 采用扫描电镜、透射电子显微镜和X射线衍射仪对所制备的产物进行了表征和分析. 结果表明产物为六方相纤锌矿单晶结构的ZnO亚微米棒, 其直径和长度分别为300~650 nm和6 μm, 提出了ZnO亚微米棒可能的生长机理. 在波长为300 nm光的激发下, 发现了ZnO亚微米棒阵列具有发光峰位于395 nm强的紫外光发光和位于490 nm弱的蓝绿光发光, 这两种发光分别起源于ZnO宽带隙带边发射和ZnO中相应的缺陷结构.  相似文献   

10.
利用Pd催化合成单晶GaN纳米线的光学特性(英文)   总被引:1,自引:0,他引:1  
基于金属元素钯具有的催化特性,采用射频磁控溅射方法,在Si(111)衬底上沉积Pd:Ga2O3薄膜,然后在950℃下对薄膜进行氨化,制备出大量GaN纳米线.采用扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等技术手段对样品的结构、形貌和成分进行分析.结果表明,制备的样品为具有六方纤锌矿结构的单晶GaN纳米线,直径在20-60nm范围内,长度为几十微米,表面光滑无杂质,结晶质量较高.用光致发光光谱对样品的发光特性进行测试,分别在361.1、388.6和426.3nm处出现三个发光峰,且与GaN体材料相比近带边紫外发光峰发生了较弱的蓝移.对GaN纳米线的生长机制也进行了简单的讨论.  相似文献   

11.
以阳极氧化铝膜 (AAO)作模板 ,制备聚苯胺 (PANI)纳米管和PANI纳米管列阵 ;同时利用溶胶_凝胶法制备ZnO_PANI同轴纳米线和同轴纳米线列阵 .PANI纳米管和ZnO_PANI同轴纳米线的形貌通过透射电子显微镜表征 .PANI纳米管的外径约 3 0nm ,内径约 1 0nm ;ZnO_PANI同轴纳米线直径约 60nm .实验发现 ,较之ZnO纳米线 ,同轴AAO模板中纳米线列阵的可见光发射谱带兰移 ,强度显著增强 ,这可能和PANI链上的NH基团与表面Zn2 +离子之间的相互作用有关 ,以及由于ZnO纳米微粒在PANI上富集、PANI的光生载流子部分转移给ZnO微粒所致 .实验还发现分散在NaOH溶液中的同轴纳米线 ,其可见光发射谱带比AAO模板中同轴纳米线的谱带兰移更甚  相似文献   

12.
S-doped ZnO nanostructures such as nanonails and nanowires have been synthesized via a simple one-step catalyst-free thermal evaporation process on a large scale. The doping concentration of sulfur into ZnO nanonails and nanowire were 2 atm % and 7.5 atm %, respectively. Studies found that the S-doped ZnO nanonails and nanowires were single-crystalline wurtzite structure and grew along the (001) direction. The average diameters of the nanonails and nanowires were 70 and 50 nm, respectively. Low-temperature photoluminescence spectra of ZnO samples showed two luminescence peaks in the UV and green emission region, respectively. As the concentration of sulfur in the ZnO nanostructures increased, the intensity of the UV emission peak decreased dramatically, and it showed a little blue-shift while the intensity of the green emission increased greatly.  相似文献   

13.
"Sulfur-doped zinc oxide (ZnO) nanowires were successfully synthesized by an electric field-assisted electrochemical deposition in porous anodized aluminum oxide template at room temperature. The structure, morphology, chemical composition and photoluminescence properties of the as-synthesized ZnO:S nanostructures were investigated. X-ray diffraction and the selected area electron diffraction results reveal that the as-ynthesized products are single phase with hexagonal wurtzite structure with a highly preferential orientation in the (101) direction. Transmission electron microscopy observations indicate that the nanowires are niform with an average diameter of 70 nm and length up to several tens of micrometers. X-ray photoelectron pectroscopy further reveals the presence of S in the ZnO nanowires. Room-temperature photoluminescences observed in the sulfur-doped ZnO nanowires which exhibits strong near-band-edge ultraviolet peaks at 378 and 392 nm and weak green emissions at 533 and 507 nm. A blue emission at 456 nm and violet emissions at around 406, 420, and 434 nm were also observed in the PL spectrum for the as-synthesized ZnO:S nanowires. The PL spectrum shows that S-doping had an obvious effect on the luminescence property of typical ZnO nanowires."  相似文献   

14.
均匀沉淀法制备氧化锌纳米棒   总被引:1,自引:0,他引:1  
采用均匀沉淀法制备了氧化锌纳米棒,用XRD,TEM,PL等检测手段对样品进行了表征.结果表明:所得样品为长约100 nm,宽约30 nm的纤锌矿结构氧化锌纳米棒,颗粒分布均匀.其在可见光区比紫外区的荧光发射显著增强.  相似文献   

15.
Unusual ZnO microspheres constructed of interconnected sheetlike nanostructures were prepared by the hydrothermal synthesis approach. These microspheres possess high surface areas (28.9 m(2)/g) and are amorphous. Trisodium citrate plays a key role in directing the formation of these microstructures. By increasing the reaction time, these microspheres gradually dissolved to form short hexagonal microrods with stacked nanoplate or nanosheet structure. The microrods were also formed under the influence of trisodium citrate. They are crystalline and show a strong (002) X-ray diffraction peak of wurtzite ZnO structure. Both microsphere and microrod samples show near-band-edge emission at approximately 385 nm, but only the microrod sample exhibits yellow luminescence at approximately 560 nm. Due to their high surface areas, these ZnO microstructures were examined for their ability to photodecompose phenol. The as-prepared samples did not display photocatalytic activity due to possible surface adsorption of solution species. However, microspheres with heat treatment to 300 degrees C can substantially enhance the photodecomposition of phenol under direct sunlight irradiation and still maintain their high surface area nanosheet structure.  相似文献   

16.
Fang F  Zhao D  Shen D  Zhang J  Li B 《Inorganic chemistry》2008,47(2):398-400
Ultrathin ZnO nanowire bundles have been synthesized on an indium-tin oxide substrate without any catalyst by using a simple thermal evaporation method, where self-organized ZnO nanowire bundles were grown on the hexagonal heads of ZnO nanocolumns. The nanowires obtained typically have diameters of 8 nm, with lengths extending to 0.25 microm. The size is the same order of magnitude as the ZnO exciton Bohr radius (aB). Room-temperature photoluminescence measurement shows a prominent peak at 374 nm (3.32 eV), which is about 100 meV blue-shifted from the bulk ZnO emission.  相似文献   

17.
ZnO nanoparticles embedded into SiO(2) by an ex situ method were shown to result in stable green emission with a peak at 510 nm compared to the normal peak at 495 nm from micron-sized ZnO powders. Green emission from ZnO nanoparticles was completely suppressed when they were embedded in SiO2 doped with Eu3+. Instead, the f-f emissions from Eu3+ were enhanced 5-10 times by energy transfer from the embedded ZnO nanoparticles to Eu3+. The Eu3+ luminescence increased as the Eu3+ concentration increased from 1 vs 5 mole % (for 10 mole % ZnO). In addition, the intensity increased as the embedded ZnO nanoparticles concentration increased up to 10 mole % (for 5 mole % Eu3+). The effects of phonon mediated energy transfer, quenching by activator interactions between Eu3+ ions, and energy back-transfer from Eu3+ ions to ZnO nanoparticles were discussed.  相似文献   

18.
Bunches of ZnO nanowires have been synthesized by hydrothermal process with the assistance of cetyltrimethylammonium bromide. The obtained bunches of ZnO nanowires are hexagonal wurtzite structures, and they exhibit orange visible emission ~600 nm. It seems the orange emission ~600 nm is due to the presence of Zn(OH)2 on the surface of ZnO nanowires. On the basis of material information provided by X-ray diffraction, scanning electron microscopy and photoluminescence, a growth mechanism is proposed for the formation of bunches of ZnO nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号