首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yukmijihwang-tang (YJ) has been used to treat diabetes mellitus, renal disorders, and cognitive impairment in traditional medicine. This study aimed to evaluate the anti-osteoporotic effect of YJ on ovariectomy (OVX)-induced bone loss in a rat and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclast differentiation in bone marrow macrophages (BMMs). YJ reduced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) in an osteoclast/osteoblast co-culture system by regulating the ratio of RANKL/osteoprotegerin (OPG) by osteoblasts. Overall, YJ reduced TRAP-positive cell formation and TRAP activity and F-actin ring formation. Analysis of the underlying mechanisms indicated that YJ inhibited the activation of the nuclear factor of activated T cell cytoplasmic 1 (NFATc1) and c-Fos, resulting in the suppression of osteoclast differentiation-related genes such as TRAP, ATPase, H+ transporting, lysosomal 38 kDa, V0 subunit d2, osteoclast-associated receptor, osteoclast-stimulatory transmembrane protein, dendritic cell-specific transmembrane protein, matrix metalloproteinase-9, cathepsin K, and calcitonin receptor. YJ also inhibited the nuclear translocation of NFATc1. Additionally, YJ markedly inhibited RANKL-induced phosphorylation of signaling pathways activated in the early stages of osteoclast differentiation including the p38, JNK, ERK, and NF-κB. Consistent with these in vitro results, the YJ-administered group showed considerably attenuated bone loss in the OVX-mediated rat model. These results provide promising evidence for the potential novel therapeutic application of YJ for bone diseases such as osteoporosis.  相似文献   

2.
3.
4.
We demonstrate that disulfide bond replacement is an efficient strategy for engineering therapeutic peptides. In previous work, short peptide fragments, known as WP9QY, with sequence homology with the predicted ligand contact surface of the receptor activator of NF-κB (RANK) were crosslinked through intramolecular disulfide bonds to inhibit RANK ligand (RANKL)-induced signaling, osteoclastogenesis, bone resorption in vitro, and bone loss in vivo. We report that replacement of the disulfide bond of WP9QY with an amine cross-linkage results in a significant improvement in enzymatic stability, with only a slight loss of bone resorption-blocking activity in vitro. Furthermore, the WP9QY derivative inhibits bone loss significantly in vivo, whereas the native form of WP9QY was not effective under the same conditions.  相似文献   

5.
High ambient Ca2+ at bone resorption sites have been implicated to play an important role in the regulation of bone remodeling. The present study was performed to clarify the mode of high extracellular Ca2+ (Ca2+(e))-induced modulation of osteoclastogenesis and the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG), thereby to define its role in osteoclast formation. Mouse bone marrow cells were cocultured with osteoblastic cells in the absence or presence of osteoclastogenic factors such as 1,25-dihydroxyvitaminD3 (1,25-(OH)2vitD3)and macrophage colony-stimulating factor/soluble RANKL. Ca2+ concentration in media (1.8 mM) was adjusted to 3, 5, 7 or 10 mM. Osteoclast formation was confirmed by the appearance of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells and the expression of osteoclast phenotypic markers (calcitonin receptor, vitronectin receptor, cathepsin K, matrix metalloproteinase-9, carbonic anhydrase 2). High Ca2+(e) alone significantly stimulated osteoclast formation in a dose-dependent manner. However, in the presence of highly osteoclastogenic factors, high Ca2+(e) significantly inhibited osteoclastogenesis. High Ca2+(e) alone continuously up-regulated RANKL expression while only transiently increased OPG expression. However, in the presence of 1,25-(OH)(2)vitD(3), high Ca2+(e) did not change the 1,25-(OH)2vitD3-induced RANKL expression while increased OPG expression. Taken together, these findings suggest that high Ca2+(e) alone increase osteoclastogenesis but inhibit in the presence of other osteoclastogenic factors. In addition, high CaCa2+(e)-induced osteoclastogenesis may be mediated by osteoblasts via up-regulation of RANKL expression. Meanwhile up-regulated OPG might participate in the inhibitory effect of high Ca2+(e) on 1,25-(OH)2vitD3-induced osteoclastogenesis.  相似文献   

6.
Recently, reactive oxygen species (ROS) have been studied as a regulator of differentiation into specific cell types in embryonic stem cells (ESCs). However, ROS role in human ESCs (hESCs) is unknown because mouse ESCs have been used mainly for most studies. Herein we suggest that ROS generation may play a critical role in differentiation of hESCs; ROS enhances differentiation of hESCs into bi-potent mesendodermal cell lineage via ROS-involved signaling pathways. In ROS-inducing conditions, expression of pluripotency markers (Oct4, Tra 1-60, Nanog, and Sox2) of hESCs was decreased, while expression of mesodermal and endodermal markers was increased. Moreover, these differentiation events of hESCs in ROS-inducing conditions were decreased by free radical scavenger treatment. hESC-derived embryoid bodies (EBs) also showed similar differentiation patterns by ROS induction. In ROS-related signaling pathway, some of the MAPKs family members in hESCs were also affected by ROS induction. p38 MAPK and AKT (protein kinases B, PKB) were inactivated significantly by buthionine sulfoximine (BSO) treatment. JNK and ERK phosphorylation levels were increased at early time of BSO treatment but not at late time point. Moreover, MAPKs family-specific inhibitors could prevent the mesendodermal differentiation of hESCs by ROS induction. Our results demonstrate that stemness and differentiation of hESCs can be regulated by environmental factors such as ROS.  相似文献   

7.
Matrix metalloproteinase-9 (MMP-9) may play an important role in emphysematous change in chronic obstructive pulmonary disease (COPD), one of the leading causes of mortality and morbidity worldwide. We previously reported that simvastatin, an inhibitor of HMG-CoA reductase, attenuates emphysematous change and MMP-9 induction in the lungs of rats exposed to cigarette smoke. However, it remained uncertain how cigarette smoke induced MMP-9 and how simvastatin inhibited cigarette smoke-induced MMP-9 expression in alveolar macrophages (AMs), a major source of MMP-9 in the lungs of COPD patients. Presently, we examined the related signaling for MMP-9 induction and the inhibitory mechanism of simvastatin on MMP-9 induction in AMs exposed to cigarette smoke extract (CSE). In isolated rat AMs, CSE induced MMP-9 expression and phosphorylation of ERK and Akt. A chemical inhibitor of MEK1/2 or PI3K reduced phosphorylation of ERK or Akt, respectively, and also inhibited CSE-mediated MMP-9 induction. Simvastatin reduced CSE-mediated MMP-9 induction, and simvastatin-mediated inhibition was reversed by farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP). Similar to simvastatin, inhibition of FPP transferase or GGPP transferase suppressed CSE-mediated MMP-9 induction. Simvastatin attenuated CSE-mediated activation of RAS and phosphorylation of ERK, Akt, p65, IκB, and nuclear AP-1 or NF-κB activity. Taken together, these results suggest that simvastatin may inhibit CSE-mediated MMP-9 induction, primarily by blocking prenylation of RAS in the signaling pathways, in which Raf-MEK-ERK, PI3K/Akt, AP-1, and IκB-NF-κB are involved.  相似文献   

8.
Osteoblasts and osteoclasts play a pivotal role in maintaining bone homeostasis, of which excessive bone resorption by osteoclasts can cause osteoporosis and various bone diseases. However, current osteoporosis treatments have many side effects, and research on new treatments that can replace these treatments is ongoing. Therefore, in this study, the roles of ligustroside (LGS) and oleoside dimethylester (ODE), a natural product-derived compound isolated from Syringa oblata subsp. dilatata as a novel, natural product-derived osteoporosis treatments were investigated. In the results of this study, LGS and ODE inhibited the differentiation of receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced RAW264.7 cells into osteoclasts without cytotoxicity, and down-regulated the activity of TRAP, a specific biomarker of osteoclasts. In addition, it inhibited bone resorption and actin ring formation, which are important functions and features of osteoclasts. Also, the effects of LGS and ODE on the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) and phosphoinositide 3-kinases (PI3K)/ protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) signaling pathways that play important roles in osteoclast differentiation were evaluated. In the results, LGS and ODE downregulated the phosphorylation of RANKL-induced MAPK and PI3K/Akt/mTOR proteins in a concentration-dependent manner, translocation of NF-κB into the nucleus was inhibited. As a result, the compounds LGS and ODE isolated from S. oblate subsp. dilatata effectively regulated the differentiation of RANKL-induced osteoclasts and inhibited the phosphorylation of signaling pathways that play a pivotal role in osteoclast differentiation. Therefore, these results suggest the possibility of LGS and ODE as new natural product treatments for bone diseases caused by excessive osteoclasts.  相似文献   

9.
The statin drug Simvastatin is a HMG-CoA reductase inhibitor that has been widely used to lower blood lipid. However, the drug is clinically observed to reposition a significant suppressing potency on glioblastoma (GBM) by unexpectedly targeting diverse kinase pathways involved in GBM tumorigensis. Here, an inverse screening strategy is described to discover potential kinase targets of Simvastatin. Various human protein kinases implicated in GBM are enriched to define a druggable kinome; the binding behavior of Simvastatin to the kinome is profiled systematically via an integrative computational approach, from which most kinases have only low or moderate binding potency to Simvastatin, while only few are identified as promising kinase hits. It is revealed that Simvastatin can potentially interact with certain known targets or key regulators of GBM such as ErbB, c-Src and FGFR signaling pathways, but exhibit low affinity to the well-established GBM target of PI3K/Akt/mTOR pathway. Further assays determine that Simvastatin can inhibit kinase hits EGFR, MET, SRC and HER2 at nanomolar level, which are comparable with those of cognate kinase inhibitors. Structural analyses reveal that the sophisticated T790 M gatekeeper mutation can considerably reduce Simvastatin sensitivity to EGFR by inducing the ligand change between different binding modes.  相似文献   

10.
11.
Osteoporosis is characterized by the deterioration of bone structures and decreased bone mass, leading to an increased risk of fracture. Estrogen deficiency in postmenopausal women and aging are major factors of osteoporosis and are some of the reasons for reduced quality of life. In this study, we investigated the effects of n-trans-hibiscusamide (NHA) and its derivative 4-O-(E)-feruloyl-N-(E)-hibiscusamide (HAD) on receptor activator of nuclear factor kappa-Β (NF-κB) ligand (RANKL)-induced osteoclast differentiation and an ovariectomized osteoporosis mouse model. NHA and HAD significantly inhibited the differentiation of osteoclasts from bone marrow-derived macrophages (BMMs) and the expression of osteoclast differentiation-related genes. At the molecular level, NHA and HAD significantly downregulated the phosphorylation of mitogen-activated protein kinase (MAPK) signaling molecules. However, Akt and NF-κB phosphorylation was inhibited only after NHA or HAD treatment. In the ovariectomy (OVX)-induced osteoporosis model, both NHA and HAD effectively improved trabecular bone structure. C-terminal telopeptide (CTX), a bone resorption marker, and RANKL, an osteoclast stimulation factor, were significantly reduced by NHA and HAD. The tartrate-resistant acid phosphatase (TRAP)-stained area, which indicates the osteoclast area, was also decreased by these compounds. These results show the potential of NHA and HAD as therapeutic agents for osteoporosis.  相似文献   

12.
Platinum nanoparticles (PtNP) exhibit remarkable antioxidant activity. There is growing evidence concerning a positive relationship between oxidative stress and bone loss, suggesting that PtNP could protect against bone loss by modulating oxidative stress. Intragastric administration of PtNP reduced ovariectomy (OVX)- induced bone loss with a decreased level of activity and number of osteoclast (OC) in vivo. PtNP inhibited OC formation by impairing the receptor activator of nuclear factor-κB ligand (RANKL) signaling. This impairment was due to a decreased activation of nuclear factor-κB and a reduced level of nuclear factor in activated T-cells, cytoplasmic 1 (NFAT2). PtNP lowered RANKL-induced long lasting reactive oxygen species as well as intracellular concentrations of Ca(2+) oscillation. Our data clearly highlight the potential of PtNP for the amelioration of bone loss after estrogen deficiency by attenuated OC formation.  相似文献   

13.
14.
Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.  相似文献   

15.
Osteoporosis is the result of an imbalance in the bone-remodeling process via an increase in osteoclastic activity and a decrease in osteoblastic activity. Our previous studies have shown that Perilla frutescens seed meal has anti-osteoclastogenic activity. However, the role of perilla leaf hexane fraction (PLH) in osteoporosis has not yet been investigated and reported. In this study, we aimed to investigate the effects of PLH in osteoclast differentiation and osteogenic potential using cell-based experiments in vitro. From HPLC analysis, we found that PLH contained high luteolin and baicalein. PLH was shown to inhibit RANKL-induced ROS production and tartrate-resistant acid phosphatase (TRAP)-positive multi-nucleated osteoclasts. Moreover, PLH significantly downregulated the RANKL-induced MAPK and NF-κB signaling pathways, leading to the attenuation of NFATc1 and MMP-9 expression. In contrast, PLH enhanced osteoblast function by regulating alkaline phosphatase (ALP) and restoring TNF-α-suppressed osteoblast proliferation and osteogenic potential. Thus, luteolin and baicalein-rich PLH inhibits osteoclast differentiation but promotes the function of osteoblasts. Collectively, our data provide new evidence that suggests that PLH may be a valuable anti-osteoporosis agent.  相似文献   

16.
Heat shock protein‐27 (HSP27) is a member of the small HSP family which has been linked to the nuclear factor‐kappa B (NF‐κB) signaling pathway regulating inflammatory responses. Clinical reports have suggested that low‐level light therapy/laser irradiation (LLLT) could be an effective alternative treatment to relieve inflammation during bacterial infection associated with periodontal disease. However, it remains unclear how light irradiation can modulate the NF‐κB signaling pathway. We examined whether or not 635 nm irradiation could lead to a modulation of the NF‐kB signaling pathway in HSP27‐silenced cells and analyzed the functional cross‐talk between these factors in NF‐κB activation. The results showed that 635 nm irradiation led to a decrease in the HSP27 phosphorylation, reactive oxygen species (ROS) generation, I‐κB kinase (IKK)/inhibitor of κB (IκB)/NF‐κB phosphorylation, NF‐κB p65 translocation and a subsequent decrease in the COX‐1/2 expression and prostaglandin (PGE2) release in lipopolysaccharide(LPS)‐induced human gingival fibroblast cells (hGFs). However, in HSP27‐silenced hGFs, no obvious changes were observed in ROS generation, IKK/IκB/NF‐κB phosphorylation, NF‐κB p65 translocation, nor in COX‐1/2 expression, or PGE2 release. This could be a mechanism by which 635 nm irradiation modulates LPS‐induced NF‐κB signaling pathway via HSP27 in inflammation. Thus, HSP27 may play a role in regulating the anti‐inflammatory response of LLLT.  相似文献   

17.
Erbin belongs to the LAP protein family. It represents a novel type of adaptor protein that features targeting of basolateral localization of the Her2 receptor through direct binding to the Her2 C terminus. Recent studies demonstrated that Erbin could inhibit the Ras-mediated activation of the mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB) and transforming growth factor β (TGF-β) signaling pathways. It suggests that Erbin may function as a signaling molecule. The functions of Erbin in determining cell polarity and cell adhesion have been well described. This review mainly focuses on the recent findings in regulation of signaling pathways by Erbin.  相似文献   

18.
NLR family proteins play important roles in innate immune response. NOD1 (NLRC1) activates various signaling pathways including NF-κB in response to bacterial ligands. Hereditary polymorphisms in the NOD1 gene are associated with asthma, inflammatory bowel disease, and other disorders. Using a high throughput screening (HTS) assay measuring NOD1-induced NF-κB reporter gene activity, followed by multiple downstream counter screens that eliminated compounds impacting other NF-κB effectors, 2-aminobenzimidazole compounds were identified that selectively inhibit NOD1. Mechanistic studies of a prototypical compound, Nodinitib-1 (ML130; CID-1088438), suggest that these small molecules cause conformational changes of NOD1 in?vitro and alter NOD1 subcellular targeting in cells. Altogether, this inaugural class of inhibitors provides chemical probes for interrogating mechanisms regulating NOD1 activity and tools for exploring the roles of NOD1 in various infectious and inflammatory diseases.  相似文献   

19.
Fritillariae thunbergii bulbus has been widely used to treat symptoms of coughs and airway congestion in the chest due to pathological colds and damp phlegm in traditional Chinese medicine. Despite its long history of traditional use, its pharmacological activities on osteoclastogenesis and osteoporosis have not been evaluated. This study investigated the effects of the water extract of Fritillariae thunbergii bulbus (WEFT) on osteoclast differentiation in bone marrow-derived macrophage cells and on ovariectomy (OVX)-induced osteoporosis in mice. We found that WEFT significantly inhibited osteoclastogenesis by downregulating the receptor activator of the NF-κB ligand (RANKL) signaling-induced nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) expression. In an OVX-induced osteoporosis model, WEFT significantly prevented the OVX-induced trabecular loss of femurs, accompanied by a reduction in fat accumulation in the bone marrow and liver. In addition, WEFT significantly prevented weight gain and gonadal fat gain without recovering uterine atrophy. Using ultrahigh-performance liquid chromatography-tandem mass spectrometry, seven alkaloids (peimisine glucoside, yibeissine, peiminoside, sipeimine-glucoside, peimisine, peimine, and peiminine) were identified in WEFT. The results of this study suggest that WEFT can be a potential pharmacological candidate to reduce menopausal osteoporosis and menopause-related symptoms, such as fat accumulation.  相似文献   

20.
Recent studies have reported that the cholinergic anti-inflammatory pathway regulates peripheral inflammatory responses via alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) and that acetylcholine and nicotine regulate the expression of proinflammatory mediators such as TNF-alpha and prostaglandin E2 in microglial cultures. In a previous study we showed that ATP released by beta-amyloid-stimulated microglia induced reactive oxygen species (ROS) production, in a process involving the P2X(7) receptor (P2X(7)R), in an autocrine fashion. These observations led us to investigate whether stimulation by nicotine could regulate fibrillar beta amyloid peptide (1-42) (fAbeta1-42)-induced ROS production by modulating ATP efflux-mediated Ca(2+) influx through P2X(7)R. Nicotine inhibited ROS generation in fAbeta(1-42)-stimulated microglial cells, and this inhibition was blocked by mecamylamine, a non-selective nAChR antagonist, and a-bungarotoxin, a selective alpha7 nAChR antagonist. Nicotine inhibited NADPH oxidase activation and completely blocked Ca(2+) influx in fAbeta(1-42)-stimulated microglia. Moreover, ATP release from fAbeta(1-42)-stimulated microglia was significantly suppressed by nicotine treatment. In contrast, nicotine did not inhibit 2',3'-O-(4-benzoyl)-benzoyl ATP (BzATP)-induced Ca(2+) influx, but inhibited ROS generation in BzATP-stimulated microglia, indicating an inhibitory effect of nicotine on a signaling process downstream of P2X(7)R. Taken together, these results suggest that the inhibitory effect of nicotine on ROS production in fAbeta1-42-stimulated microglia is mediated by indirect blockage of ATP release and by directly altering the signaling process downstream from P2X(7)R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号