首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A variety of density functional methods have been evaluated in the computation of electronic g-tensors and molybdenum hyperfine couplings for systems ranging from the Mo atom through MoIIIN, [MoVOCl4]-, and [MoVOF5]2- to two larger MoV complexes MoXLCl2 (X=O, S; L=tris(3,5-dimethylpyrazolyl)hydroborate anion). In particular, the influence of the molybdenum basis set and of various exchange-correlation functionals with variable admixtures of Hartree-Fock exchange on the computed EPR parameters have been evaluated in detail. Careful basis-set studies have provided a moderate-sized 12s6p5d all-electron basis on molybdenum that gives hyperfine tensors in excellent agreement with much larger basis sets and that will be useful for calculations on larger systems. The best agreement with experimental data for both hyperfine and g-tensors is obtained with hybrid functionals containing approximately 30-40% Hartree-Fock exchange. Only for MoSLCl2 does increasing spin contamination with increasing exact-exchange admixture restrict the achievable computational accuracy. In all cases, spin-orbit corrections to the hyperfine tensors are sizable and have to be included in accurate calculations. Scalar relativistic effects enhance the isotropic Mo hyperfine coupling by approximately 15-20%. Two-component g-tensor calculations with variational inclusion of spin-orbit coupling show that the Deltag parallel components in [MoVOCl4]- and [MoVOF5]2- depend on higher-order spin-orbit contributions and are thus described insufficiently by the usual second-order perturbation approaches. Computed orientations of g- and hyperfine tensors relative to each other and to the molecular framework for the MoXLCl2 complexes provide good agreement between theory and single-crystal electron paramagnetic resonance experiments. In these cases, the hyperfine tensor orientations are influenced only slightly by spin-orbit effects.  相似文献   

2.
The careful validation of modern density functional methods for the computation of electron paramagnetic resonance (EPR) parameters in molybdenum complexes has been extended to a number of low-symmetry MoV systems that model molybdoenzyme active sites. Both g and hyperfine tensors tend to be reproduced best by hybrid density functionals with about 30-40% exact-exchange admixture, with no particular spin contamination problems encountered. Spin-orbit corrections to hyperfine tensors are mandatory for quantitative and, in some cases, even for qualitative agreement. The g11 (g||) component of the g tensor tends to come out too positive when spin-orbit coupling is included only to leading order in perturbation theory. Compared to single-crystal experiments, the calculations reproduce both g- and hyperfine-tensor orientations well, both relative to each other and to the molecular framework. This is significant, as simulations of the EPR spectra of natural-abundance frozen-solution samples frequently do not allow a reliable determination of the hyperfine tensors. These may now be extracted based on the quantum-chemically calculated parameters. In a number of cases, revised simulations of the experimental spectra have brought theory and experiment into substantially improved agreement. Systems with two terminal oxo ligands, and to some extent with an oxo and a sulfido ligand, have been confirmed to exhibit particularly large negative Deltag33 shifts and thus large g anisotropies. This is discussed in the context of the experimental data for xanthine oxidase.  相似文献   

3.
4.
The EPR parameters of the manganese site in the saccharide-binding protein concanavalin A have been studied by density functional methods, with an emphasis on metal (55Mn) and ligand (1H and 17O) hyperfine couplings, in comparison with high-field EPR and ENDOR data. Results for gradient-corrected and hybrid functionals with different exact-exchange admixture have been compared with experiment for the 55Mn and the 1H ligand hyperfine coupling and have been predicted for 17O hyperfine coupling based on comparison with experiment for the related [Mn(H2O)6]2+. Appreciable exact-exchange admixture in the hybrid functional is needed to obtain an adequate spin-density distribution and thus near-quantitative agreement with experimental EPR parameters. The common use of experimental proton hyperfine coupling tensors together with the point-dipole approximation for determination of bond lengths is evaluated by explicit calculations.  相似文献   

5.
A second-order perturbation theory treatment of spin-orbit corrections to hyperfine coupling tensors has been implemented within a density-functional framework. The method uses the all-electron atomic mean-field approximation and/or spin-orbit pseudopotentials in incorporating one- and two-electron spin-orbit interaction within a first-principles framework. Validation of the approach on a set of main-group radicals and transition metal complexes indicates good agreement between all-electron and pseudopotential results for hyperfine coupling constants of the lighter nuclei in the system, except for cases in which scalar relativistic effects become important. The nonrelativistic Fermi contact part of the isotropic hyperfine coupling constants is not always accurately reproduced by the exchange-correlation functionals employed, particularly for the triplet and pi-type doublet radicals in the present work. For this reason, ab initio coupled-cluster singles and doubles with perturbative triples results for the first-order contributions have been combined in the validation calculations with the density-functional results for the second-order spin-orbit contributions. In the cases where spin-orbit corrections are of significant magnitude relative to the nonrelativistic first-order terms, they improve the agreement with experiment. Antisymmetric contributions to the hyperfine tensor arise from the spin-orbit contributions and are discussed for the IO2 radical, whereas rovibrational effects have been evaluated for RhC, NBr, and NI.  相似文献   

6.
Terms arising from the relativistic spin-orbit effect on both hyperfine and Zeeman interactions are introduced to density-functional theory calculation of nuclear magnetic shielding in paramagnetic molecules. The theory is a generalization of the former nonrelativistic formulation for doublet systems and is consistent to O(alpha4), the fourth power of the fine structure constant, for the spin-orbit terms. The new temperature-dependent terms arise from the deviation of the electronic g tensor from the free-electron g value as well as spin-orbit corrections to hyperfine coupling tensor A, the latter introduced in the present work. In particular, the new contributions include a redefined isotropic pseudocontact contribution that consists of effects due to both the g tensor and spin-orbit corrections to hyperfine coupling. The implementation of the spin-orbit terms makes use of all-electron atomic mean-field operators and/or spin-orbit pseudopotentials. Sample results are given for group-9 metallocenes and a nitroxide radical. The new O(alpha4) corrections are found significant for the metallocene systems while they obtain small values for the nitroxide radical. For the isotropic shifts, none of the three beyond-leading-order hyperfine contributions are negligible.  相似文献   

7.
Relativistic calculations within the spin-orbit mean-field (SOMF) approximation, the zero-order regular approximation (ZORA), and the scalar relativistic method based on the Pauli Hamiltonian were performed for the prediction and interpretation of the electronic g tensor and (13)C hyperfine tensor for a set of model polycarbonyl nickel(I) complexes with aqua or hydroxy coligands. They exhibit extensive similarities with heterogeneous [Ni(I)(CO)(n)]-surface complexes produced upon adsorption of carbon monoxide on Ni(I) ions grafted on silica or inside the zeolite channels. Benchmark calculations showing the influence of the exchange-correlation functional on the g tensor were carried out for well-defined nickel(I) complexes of known structure. On this basis, the SOMF-B3LYP scheme was chosen for calculations of the g tensor, and the obtained results were in satisfactory agreement with literature EPR data found for the [Ni(I)(CO)(n)]/SiO(2) system. The calculated g and A((13)C) tensors allowed polycarbonyl complexes of various stereochemistries to be distinguished. The nature of the Deltag(ii) shifts was assessed in terms of the molecular orbital contributions due to the magnetic-field-induced couplings and their structure sensitivity. The noncoincidence of g and (13)C hyperfine principal axes and their orientation with respect to the molecular framework was also examined. The ability of DFT calculations to follow consistently variations of the EPR parameters induced by stereochemical changes around the Ni(I) center provides an invaluable reference for the interpretation of experimental results.  相似文献   

8.
The nuclear hyperfine tensor (A) components of the 2,2'-diphenyl-1-picrylhydrazyl neutral radical are computed using the UB1LYP hybrid density functional method. Solvent interactions via hydrogen bonding are found to play a crucial role in the position of the two phenyl rings relative to the picryl moiety. Under these conditions, the calculated isotropic hyperfine tensor components of the N 1 and N 2 hydrazyl backbone are within approximately 1.3 Gauss (G) of the experimental values determined by EPR and ENDOR spectroscopy. Just as important are the effects of restricted rotations of the phenyl rings on these tensors. Rotational averaging using a Maxwell-Boltzmann type distribution improves the agreement between theory and experiment to less than 1.0 G. In addition, rotational averaging of the twelve isotropic proton coupling constants has also been performed. They come within 0.3 G of the experimental values. Thus, for the first time, all the nuclear hyperfine tensor components of this large class of molecules are accurately calculated without resorting to post Hartree-Fock techniques.  相似文献   

9.
In order to find a reliable and efficient calculation scheme for electron paramagnetic resonance (EPR) spectroscopic parameters for transition metal complexes in ionic solids from first principles, periodic and finite cluster-in-vacuo density functional theory (DFT) simulations are performed for g tensors, ligand hyperfine tensors (A), and quadrupole tensors (Q) for Rh(2+)-related centers in NaCl. EPR experiments on NaCl:Rh single crystals identified three Rh(2+) monomer centers, only differing in the number of charge compensating vacancies in their local environment, and one dimer center. Periodic and cluster calculations, both based on periodically optimized structures, are able to reproduce experimentally observed trends in the ligand A and Q tensors and render very satisfactory numerical agreement with experiment. Taking also computation time into account as a criterion, a full periodic approach emerges as most appropriate for these parameters.The g tensor calculations, on the other hand, prove to be insufficiently accurate for model assessment. The calculations also reveal parameters of the complexes which are not directly accessible through experiments, in particular related to their geometry.  相似文献   

10.
Spin-orbit and spin-spin contributions to the zero-field splitting (ZFS) tensors (D tensors) of spin-triplet phenyl-, naphthyl-, and anthryl-nitrenes in their ground state are investigated by quantum chemical calculations, focusing on the effects of the ring size and substituted position of nitrene on the D tensor. A hybrid CASSCF/MRMP2 approach to the spin-orbit term of the D tensor (D(SO) tensor), which was recently proposed by us, has shown that the spin-orbit contribution to the entire D value, termed the ZFS parameter or fine-structure constant, is about 10% in all the arylnitrenes under study and less depends on the size and connectivity of the aryl groups. Order of the absolute values for D(SO) can be explained by the perturbation on the energy level and spatial distributions of π-SOMO through the orbital interaction between SOMO of the nitrene moiety and frontier orbitals of the aryl scaffolds. Spin-spin contribution to the D tensor (D(SS) tensor) has been calculated in terms of the McWeeny-Mizuno equation with the DFT/EPR-II spin densities. The D(SS) value calculated with the RO-B3LYP spin density agrees well with the D(Exptl) -D(SO) reference value in phenylnitrene, but agreement with the reference value gradually becomes worse as the D value decreases. Exchange-correlation functional dependence on the D(SS) tensor has been explored with standard 23 exchange-correlation functionals in both RO- and U-DFT methodologies, and the RO-HCTH/407 method gives the best agreement with the D(Exptl) -D(SO) reference value. Significant exchange-correlation functional dependence is observed in spin-delocalized systems such as 9-anthrylnitrene (6). By employing the hybrid CASSCF/MRMP2 approach and the McWeeny-Mizuno equation combined with the RO-HCTH/407/EPR-II//U-HCTH/407/6-31G* spin densities for D(SO) and D(SS), respectively, a quantitative agreement with the experiment is achieved with errors less than 10% in all the arylnitrenes under study. Guidelines to the putative approaches to D(SS) tensor calculations are given.  相似文献   

11.
本文报道了Cu[(C6H11O)2PS2]2配合物单晶在X波段室温下的电子顺磁共振研究. 电子顺磁共振谱显示出由^6^3Cu和^6^5Cu的磁性核引起的超精细结构以及由配体^3^1P的磁性核引起的配体超精细结构. 用非同轴的g张量和A张量系统的最小二乘拟合技术, 严格地计算了自旋Hamiltonian参数. g张量的主值表征, Cu^2^+处在由四个配体S形成的平行四方形的中心, 具有四角对称性, 但是由于配体中两个P的影响, 在CuS4平面上A张量的主值出现较大的各向异性. g张量和A张量有一个主轴是共轴的, 它们与CuS4平面垂直. 实验上观察到电子自旋与配体中^3^1P的相互作用是各向同性的, 并获得相应的配体超精细耦合常数A^p值.  相似文献   

12.
13.
14.
The calculation of nuclear shieldings for paramagnetic molecules has been implemented in the ReSpect program, which allows the use of modern density functional methods with accurate treatments of spin-orbit effects for all relevant terms up to order Omicron(alpha4) in the fine structure constant. Compared to previous implementations, the methodology has been extended to compounds of arbitrary spin multiplicity. Effects of zero-field splittings in high-spin systems are approximately accounted for. Validation of the new implementation is carried out for the 13C and 1H NMR signal shifts of the 3d metallocenes 4VCp2, 3CrCp2, 2MnCp2, 6MnCp2, 2CoCp2, and 3NiCp2. Zero-field splitting effects on isotropic shifts tend to be small or negligible. Agreement with experimental isotropic shifts is already good with the BP86 gradient-corrected functional and is further improved by admixture of Hartree-Fock exchange in hybrid functionals. Decomposition of the shieldings confirms the dominant importance of the Fermi-contact shifts, but contributions from spin-orbit dependent terms are frequently also non-negligible. Agreement with 13C NMR shift tensors from solid-state experiments is of similar quality as for isotropic shifts.  相似文献   

15.
Cholesta-4, 6-diene-3-one single crystals irradiated with γ-rays at room temperature have been investigated by electron spin resonance. EPR spectra at room temperature exhibit a characteristics triplet which splits into two doublets. The main triplet has been interpreted as being caused by the addition of a hydrogen atom to the 7-position of the molecule, leaving an unpaired electron in the 2p2 orbital of the carbon atoms in position 6 and 4. The hyperfine spectrum is generated by interaction of the unpaired electron with two equivalent -protons in position 4 and 6 and with tow non-equivalent β-protons in position 7. The principal values of the hydrogen hyperfine tensors are determined together with the g tensor of this radical.  相似文献   

16.
17.
Covalent bonding in a number of copper(II) complexes with hetarylformazans that have pseudotetrahedral or square-planar symmetry of the nearest metal environment was analyzed from EPR spectra. The dependence of the unpaired electron delocalization on the pseudotetrahedral distortion of the coordination polyhedron was determined. A change in the Zeeman coupling parameters was interpreted. Various contributions to the components of the hyperfine coupling (HFC) and ligand hyperfine coupling (LHFC) tensors were calculated. pd-Mixing of the AO of the copper ion was found to have a slight effect on the HFC parameters. In the components of the LHFC tensor, the contribution from isotronic LHFC is decisive.  相似文献   

18.
A theoretical study is performed on the radiation-induced radicals in crystalline alpha-l-rhamnose, using density functional theory (DFT) calculations. Irrespective of earlier structural assignments, a host of possible radical models is examined in search for a structure that accurately reproduces experimental electron paramagnetic resonance (EPR) properties. A cluster approach is followed, incorporating all hydrogen bond interactions between radical and crystalline environment. Hyperfine coupling tensors as well as g tensors are determined and a comparison is made with available experimental data. Three carbon-centered hydroxyalkyl radicals are validated, in accordance with experimental suggestions for their structure. The occurrence of a carbon-centered oxygen anion radical for one of the radical species is rejected on theoretical grounds, and instead an altered hydroxyalkyl structure is suggested. Our cluster calculations are able to determine g and hyperfine tensors for the oxygen-centered alkoxy radical in rhamnose, in accordance with one of the two measurements for this species. For all radical models, quantitative agreement with experimental hyperfine tensors is obtained by performing full cluster DFT calculations. The inclusion of the molecular environment for the determination of this EPR property proved to be essential.  相似文献   

19.
The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.  相似文献   

20.
Density functional theory calculations of the (51)V hyperfine coupling (HFC) tensor A, have been completed for eighteen V(IV)O(2+) complexes with different donor set, electric charge and coordination geometry. A tensor was calculated with ORCA software with several functionals and basis sets taking into account the spin-orbit coupling contribution. The results were compared with those obtained with Gaussian 03 software using the half-and-half functional BHandHLYP and 6-311g(d,p) basis set. The order of accuracy of the functionals in the prediction of A(iso), A(z) and dipolar term A(z,anis) is BHandHLYP > PBE0 > B3PW > TPSSh > B3LYP > BP86 > VWN5 (for A(iso)), BHandHLYP > PBE0 > B3PW > TPSSh > B3LYP > BP86 > VWN5 (for A(z)), B3LYP > PBE0 ~ B3PW ~ BHandHLYP > TPSSh > BP86 ~ VWN5 (for A(z,anis)). The good agreement in the prediction of A(z) with BHandHLYP is due to a compensation between the overestimation of A(iso) and underestimation of A(z,anis) (A(z) = A(iso) + A(z,anis)), whereas among the hybrid functionals PBE0 performs better than the other ones. BHandHLYP functional and Gaussian software are recommended when the V(IV)O(2+) species contains only V-O and/or V-N bonds, whereas PBE0 functional and ORCA software for V(IV)O(2+) complexes with one or more V-S bonds. Finally, the application of these methods to the coordination environment of V(IV)O(2+) ion in V-proteins, like vanadyl-substituted insulin, carbonic anhydrase, collagen and S-adenosylmethionine synthetase, was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号