首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A rapid and simple liquid-chromatographic method has been developed for on-line quantification of amphetamine in biological fluids. Untreated samples (20 μL) are injected directly into the chromatographic system and purified on a 20 mm×2.1 mm i.d. pre-column packed with 30 μm Hypersil C18 stationary phase. After clean-up the analyte is transferred to the analytical column (125 mm×4 mm i.d., 5 μm LiChrospher 100 RP18) for derivatization and separation using a mixture of acetonitrile and the derivatization reagent (o-phthaldialdehyde andN-acetyl-L-cysteine) as the mobile phase. The experimental conditions for on-line derivatization and resolution of the amphetamine have been optimized, and the results have been compared with those obtained by derivatizing the analyte in pre-column mode. The method described has been applied to the determination of amphetamine in plasma and urine. Good linearity and reproducibility were obtained in the 0.1–10.0 μg mL−1 concentration range, and limits of detection were 25 ng mL−1 and 10 ng mL−1 with UV and fluorescence detection, respectively. The procedure described is very simple and rapid, because no off-line manipulation of the sample is required; the total analysis time is approximately 8 min.  相似文献   

2.
Summary An HPLC method was developed for determination of amoxicillin, penicillin G, penicillin V, ampicillin, oxacillin, cloxacillin, nafcillin and dicloxacillin in serum from pigs and cattle. Serum was cleaned up by solid-phase extraction (SPE), ultra-filtered and derivatised. The method was linear in the range tested up to 2000 ng mL−1 of individual penicillins in serum. Limits of detection were 11–14 ng mL−1. Mean recoveries were 90–103% in the range 20–2000 ng mL−1. The relative repeatability, standard deviation was <10% at 20 ng mL−1 level and <6% in the range 100–2000 ng mL−1.  相似文献   

3.
Summary This study deals with the development of a new HPLC method for the determination of 3-methoxy-4-hydroxyphenylglycol (MHPG), the main noradrenaline metabolite in human plasma. A Varian reversed-phase column (C8; 250 mm×4.6 mm i.d.; 5 μm particles) was used as the stationary phase and an aqueous solution of citric acid, 1-octanesulfonic acid, EDTA, and methanol was used as the mobile phase. Coulometric electrochemical detection (ED) was used to obtain the highest sensitivity. Isolation of MHPG from plasma was accomplished by means of a new solid-phase extraction procedure after a protein precipitation step. The extraction yield of MHPG from plasma was very high (>97%). Linearity was observed in the 0.5–25 ng mL−1 concentration range; the limit of detection was 0.2 ng mL−1 and the limit of quantitation was 0.5 ng mL−1. Repeatability (RSD,%) for plasma samples was found to be <3.2% and intermediate precision was <4.3%. The method was applied to the determination of MHPG in the plasma of healthy subjects under experimentally-induced psychological stress.  相似文献   

4.
A high-performance liquid chromatography–UV method for determining DCJW concentration in rat plasma was developed. The method described was applied to a pharmacokinetics study of intramuscular injection in rats. The plasma samples were deproteinized with acetonitrile in a one-step extraction. The HPLC assay was carried out using a VP-ODS column and the mobile phase consisting of acetonitrile–water (80:20, v/v) was used at a flow rate of 1.0 mL min−1 for the effective eluting DCJW. The detection of the analyte peak area was achieved by setting a UV detector at 314 nm with no interfering plasma peak. The method was fully validated with the following validation parameters: linearity range 0.06–10 μg mL−1 (r > 0.999); absolute recoveries of DCJW were 97.44–103.46% from rat plasma; limit of quantification, 0.06 μg mL−1 and limit of detection, 0.02 μg mL−1. The method was further used to determine the concentration–time profiles of DCJW in the rat plasma following intramuscular injection of DCJW solution at a dose of 1.2 mg kg−1. Maximum plasma concentration (C max) and area under the plasma concentration–time curve (AUC) for DCJW were 140.20 ng mL−1 and 2405.28 ng h mL−1.  相似文献   

5.
H. B. Li  F. Chen 《Chromatographia》2001,54(3-4):270-273
Summary A novel method for the simultaneous determination of twelve water- and fat-soluble vitamins has been established by high-performance liquid chromatography with diode array detection. The vitamins were analyzed on a μBondapak C18 column (300 × 3.9 mm, 10 μm) with methanol-KH2PO4 buffer (0.1 M, pH 7.0)-water as mobile phase in a gradient. The linearity of calibration graphs was compound-dependent and the detection limits ranged from 0.02 μg mL−1 to 0.5 μg mL−1. The method was successfully applied to determine vitamins in pharmaceutical preparations. The recoveries were from 95.1% to 103% and the relative standard deviations were in the range of 0.9% to 4.5%.  相似文献   

6.
Summary A rapid and accurate HPLC method is described for the simultaneous determination of acetaminophen, dextromethorphen hydrobromide and pseudoephedrine hydrochloride in a new cold formulation. Chromatographic separation of the three pharmaceuticals was performed on a Hypersil CN column (150×5.0 mm, 5 μm) with a mobile phase mixture of an ion-pairing solution, methanol and acetonitrile (25:57:18, v/v), at a flow rate of 1.0 mL min−1, with detection at 220 nm. Separation was complete in less than 10 min. The method was validated for linearity, accuracy, precision, limit of quantitation and robustness. Linearity, accuracy, and precision were found to be acceptable over the ranges of 2.06∼20.6 μg·mL−1 for acetaminophen, 0.202∼2.02 mg·mL−1 for pseudoephedrine hydrochloride and 0.042∼1.06 mg·mL−1 for dextromethorphen hydrobromide.  相似文献   

7.
Summary An HPLC method with fluorescence detection has been developed for the determination of fluoxetine and its main metabolite norfluoxetine in human plasma. Pretreatment of the biological samples by liquid-liquid extraction was used to improve the sensitivity of a previously published SPE procedure. The method uses 200 μL plasma and recovery is good for both analytes. On a C8 column with a mixture of perchlorate buffer and acetonitrile as mobile phase fluoxetine, norfluoxetine and the internal standard (paroxetine) were eluted in less than 9 min, without interference from the biological matrix. Response for both analytes was linearly dependent on concentration over the range 2.5–500 ng mL−1, and repeatability (RSD%) was <4%. The limit of detection was 1 ng mL−1 for both fluoxetines. Application to plasma samples from depressed patients treated with fluoxetine gave good results. There was no interference from other common CNS drugs. This method seems to be a useful tool for clinical monitoring, because it requires small plasma samples and is highly sensitive and highly selective.  相似文献   

8.
Summary A simple and rapid liquid chromatographic method has been developed for the determination of therapeutic levels of piperacillin (I) and ceftazidime (II) in human plasma. Plasma and p-propionamidophenol (internal standard) were precipitated with methanol (I) or 20% trichloroacetic acid (II). The supernatant was analysed on a 5 μm Spherisorb ODS C18 column with acetonitrile-0.05 M phosphate buffer pH 3.8 as mobile phase and ultraviolet detection at 254 nm. The calibration graph was linear from 10 to 250 μg mL−1, for (I), and from 5 to 200 μg mL−1 for (II). Intra and inter-day CV did no exceed 2.29% for (I), and were 10.76–11.13%–2.00–5.62 for (II) at concentrations of 10 μg mL−1 and 250 μg mL−1.  相似文献   

9.
A simple reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of the antiepileptic drugs (AEDs) zonisamide (ZNS), primidone (PRI), lamotrigine (LTG), phenobarbital (PB), phenytoin (PHT), oxcarbazepine (OXC), and carbamazepine (CBZ) and two of their active metabolites, monohydroxycarbamazepine (MHD) and carbamazepine 10,11-epoxide (CBZE) in human plasma. Plasma (100 μL) was pretreated by deproteinization with 300 μL methanol containing 20 μg mL−1 propranolol hydrochloride as internal standard. HPLC was performed on a C8 column (4.6 mm × 250 mm; particle size 5 μm) with methanol–acetonitrile–0.1% trifluoroacetic acid, 235:120:645 (v/v), as mobile phase at a flow rate of 1.5 mL min−1. ZNS, OXC, and CBZ were monitored by UV detection at 235 nm, and PRI, LTG, MHD, PB, PHT, and CBZE by UV detection at 215 nm. Relationships between response and concentration were linear over the concentration ranges 1–80 μg mL−1 for ZNS, 5–50 μg mL−1 for PRI, 1–25 μg mL−1 for LTG, 1–50 μg mL−1 for MHD, 5–100 μg mL−1 for PB, 1–10 μg mL−1 for CBZE, 0.5–25 μg mL−1 for OXC, 1–50 μg mL−1 for PHT, and 1–25 μg mL−1 for CBZ. Intra-day and inter-day reproducibility were adequate (coefficients of variation were ≤11.6%) and absolute recovery ranged from 95.2 ± 6.13 to 107.7 ± 7.76% for all the analytes; for the IS recovery was 98.69 ± 1.12%. The method was proved to be accurate, reproducible, convenient, and suitable for therapeutic monitoring of the nine analytes.  相似文献   

10.
Summary A sensitive HPLC method with marbofloxacin (MAR) as internal standard and fluorescence detection is described for the analysis of ofloxacin (OFL) enantiomers in plasma samples. Plasma samples were prepared by adding phosphate buffer (pH 7.4, 0.1m), then extracted with trichloromethane.S-OFL,R-OFL, and the internal standard were separated on a reversed-phase column with water-methanol, 85.5∶14.5, as mobile phase. The concentrations ofS-OFL andR-OFL eluting from the column (retention times 7.5 and 8.7 min, respectively) were monitored by fluorescence detection withλ ex = 331 andλ em = 488 nm. The detection and quantitation limits were 10 and 20 ng mL−1, respectively, forS-OFL and 11 and 21 ng mL−1 forR-OFL. Response was linearly related to concentration in the range 10 to 2500 ng mL−1. Recovery was close to 93% for both compounds. The method was applied to determination of the enantiomers of OFL in plasma samples collected during pharmacokinetic studies.  相似文献   

11.
Summary A simple, low-cost, sensitive and selective HPLC method was developed for the determination of phenazopyridine in human plasma. The method employs UV detection of phenazopyridine and of the internal Standard at 2 different wavelengths. Calibration curves were linear over a large dynamic range, i.e., within 0.05–10.0 μg mL−1 with limit of quantification of 0.05 μg mL−1, and a limit of detection of 0.01 μg mL−1.  相似文献   

12.
Summary A high-performance liquid chromatographic method with amperometric detection has been developed for the determination of levels of clozapine (CLZ) and its active metabolite N-desmethylclozapine (DMC) in human plasma. The analysis was performed on a 5 μm C8 reversed phase column (150×4.6 mm i.d.), with acetonitrile-phosphate buffer (pH 3.5), as the mobile phase. The detection voltage was +800 mV and the cell and column temperature were 50°C. Linear responses were obtained between 2 ng mL−1 and 100 ng mL−1. Absolute recovery for both clozapine and desmethylclozapine exceeded 88% and the detection limit was 1 ng mL−1. Repeatability, intermediate precision and accuracy were satisfactory. The method, which is rapid, sensitive and selective, has been applied to therapeutic drug monitoring in schizophrenic patients following administration of Leponex? tablets. In 21 patients in steady state at a mean daily clozapine dosage of 358 mg (ranging from 150 to 500 mg day−1), clozapine levels averaged 379 ng mL−1 (ranging from 102 to 818 ng mL−1) and DMC levels averaged 233 ng mL−1 (ranging from 70 to 540 ng mL−1). The method requires only a very small amount of plasma (100 μL), and thus it is suitable for pharmacokinetic studies, as well as for therapeutic drug monitoring.  相似文献   

13.
Summary An HPLC method with fluorescence detection is presented for the analysis of difloxacin (DIF) and sarafloxacin (SAR) in rabbit plasma using norfloxacin (NOR) as internal standard (Figure 1). Plasma sample preparations were carried out by adding phosphate buffer (pH 7.4, 0.1 M), followed by extraction with trichloromethane. Fluoroquinolones were separated on a reversed-phase column using an aqueous phosphate solution-acetonitrile (82:18) mobile phase. The concentrations of NOR, SAR and DIF eluting off the column, with retention times of 2.16, 5.60 and 6.20, respectively, were monitored by fluorescence detection atλ ex 338 andλ em 425 nm. The quantitation limit was 12 ng mL−1 for SAR and DIF. Standard curves were linearly related to concentration in the range from 1 to 1500 ng mL−1. Recovery was determined as 76% and 70% for SAR and DIF, respectively. Inter-and intraassay coefficients of variation were less than 6% for all compounds.  相似文献   

14.
Summary A rapid, simple, accurate and sensitive liquid chromatographic assay with on-line solid-phase extraction is described for determination of trovafloxacin in human serum. Samples were deproteinized with acetonitrile and injected on to an NH2 extraction column for sample clean-up. Thereafter, an on-line column-switching system was used for quantitative transfer of the drug to a C18 analytical column. Separation was performed by ion-pair chromatography and detection was by ultraviolet absorbance at 275 nm. Recovery was 98.5%. The linear range was from 0.25 to 20μg mL−1, with a correlation coefficient of 0.999. Detection limit was 0.1 μg mL−1 from extraction of 25 μL serum.  相似文献   

15.
A new methodology was developed for analysis of aldehydes and ketones in fuel ethanol by high-performance liquid chromatography (HPLC) coupled to electrochemical detection. The electrochemical oxidation of 5-hydroxymethylfurfural, 2-furfuraldehyde, butyraldehyde, acetone and methyl ethyl ketone derivatized with 2,4-dinitrophenylhydrazine (DNPH) at glassy carbon electrode present a well defined wave at +0.94 V; +0.99 V; +1.29 V; +1.15 V and +1.18 V, respectively which are the basis for its determination on electrochemical detector. The carbonyl compounds derivatized were separated by a reverse-phase column under isocratic conditions with a mobile phase containing a binary mixture of methanol / LiClO4(aq) at a concentration of 1.0 × 10−3 mol L−1 (80:20 v/v) and a flow-rate of 1.1mL min−1 . The optimum potential for the electrochemical detection of aldehydes-DNPH and ketones-DNPH was +1.0 V vs. Ag/AgCl. The analytical curve of aldehydes-DNPH and ketones-DNPH presented linearity over the range 5.0 to 400.0 ng mL−1, with detection limits of 1.7 to 2.0 ng mL−1 and quantification limits from 5.0 to 6.2 ng mL−1, using injection volume of 20 μL. The proposed methodology was simple, low time-consuming (15 min/analysis) and presented analytical recovery higher than 95%.  相似文献   

16.
A simple, rapid, and precise reversed-phase high-performance liquid chromatographic method has been developed for simultaneous determination of losartan potassium, ramipril, and hydrochlorothiazide. The three drugs were separated on a 150 mm × 4.6 mm i.d., 5 μm particle, Cosmosil C18 column. The mobile phase was 0.025 m sodium perchlorate–acetonitrile, 62:38 (v/v), containing 0.1% heptanesulphonic acid, pH adjusted to 2.85 with orthophosphoric acid, at a flow rate of 1.0 mL min−1. UV detection was performed at 215 nm. The method was validated for linearity, accuracy, precision, and limit of quantitation. Linearity, accuracy, and precision were acceptable in the ranges 35–65 μg mL−1 for losartan, 1.75–3.25 μg mL−1 for ramipril, and 8.75–16.25 μg mL−1 for hydrochlorothiazide.  相似文献   

17.
Summary A sensitive HPLC method has been developed for determination of ofloxacin (OFL) in biological fluids. Sample preparation was performed by adding phosphate buffer (pH 7.4, 0.1m) then extraction with trichloromethane. OFL and the internal standard, sarafloxacin (SAR), were separated on a reversed-phase column with aqueous phosphate solution-acetonitrile, 80∶20, as mobile phase. The fluorescence of the column effluent was monitored at λex 338 and λem 425 nm. The retention times were 2.66 and 4.24 min for OFL and SAR, respectively, and the detection and quantitation limits were 8 and 15 ng mL−1, respectively. Plots of response against ofloxacin concentration were linear in the range 8 to 2000 ng mL−1. Recovery was 92.9% for OFL.  相似文献   

18.
Summary An automated microbore, liquid chromatographic method with column-switching was developed for the determination of clomipramine from human plasma samples. After direct injection of samples (60 μL), plasma proteins and clomipramine were separated in size-exclusion mode using 20% acetonitrile in 20 mM phosphate buffer (pH 7.0) on Capcell Pak MF Ph-1 precolumn (10×4 mm I.D.). By valve switching, a fraction containing clomipramine was directed to an intermediate column for subsequent main separation on a microbore C18 column (250×1.5 mm I.D.) using 50% acetonitrile in 20 mM phosphate buffer (pH 2.5) at 0.1 mL min−1. The method was advantageous for rapidity (total analysis time: 15 min), reproducibility (C.V.<4.8%), and increased sensitivity (1 ng mL−1). The linearity of response was good (r 2≥0.999) over the concentration range 1–250 ng mL−1.  相似文献   

19.
Red clover (Trifolium pratense L.) is an important forage plant that contains the isoflavones daidzein, genistein, formononetin, and biochanin A. These compounds have been studied lately due to their human health benefits. The aim of this study was to develop and validate an HPLC method with simplified sample preparation to quantify daidzein, genistein, formononetin and biochanin A simultaneously in red clover leaves. The validation showed that the method is specific, accurate, precise and robust, not to mention that the sample preparation is easier and faster than those described earlier. The response was linear over a range of 0.01–0.2 μg mL−1 for daidzein, 0.05–0.5 μg mL−1 for genistein, 4–40 μg mL−1 for formononetin and 2–20 μg mL−1 for biochanin A. The range of recoveries was 85.6–101.0%. The RSD for intra- and inter-day precision were <2.54 and <7.22%, respectively. Five populations of red clover, from the National Plant Germplasm System-USDA were analyzed and the content of daidzein, genistein, formononetin and biochanin A ranged from 7.87–91.31, 51.60–131.30, 6568.33–23461.82, to 2499.55–10337.33 μg g−1 of dried material, respectively.  相似文献   

20.
Summary A simple, rapid and accurate, routine-HPLC method is described for simultaneous determination of acetaminophen, caffeine and chlorpheniramine maleate in a new tablet formulation Chromatographic separation of the three pharmaceuticals was achieved on a Hypersil CN column (150×5.0 mm, 5 μm) using a mobile phase comprising a mixture of acetonitrile, an ion-pair solution and tetrahydrofuran (13:14:87, v/v,pH4.5). The flow-rate was changed from 1.0 mL min−1 (in 0≈7.5 min) to 1.8 mL min−1 (after 3.5 min). was complete in <10 min. The method was validated for system suitability, linearity, accuracy, precision, limits of detection and quantitation, and robustness. Linearity, accuracy and precision were found to be acceptable over the ranges 31.6≈315.8 μg mL−1 for acetaminophen, 9.5≈94.6 μg mL−1 for caffeine and 1.4≈13.8 μg mL−1 for chlorpheniramine maleate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号