首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract— To probe the nature of primary photoprocess and the mechanism of the phototransformation of undegraded 124 kDa oat phytochrome, solvent deuterium isotope effects on the fluorescence and phototransformation of phytochrome have been investigated. The fluorescence intensity and lifetime of phytochrome (Pr form) are greater in D20-buffer than in H2O-buffer, suggesting a possible involvement of proton transfer in the primary photoprocess of phytochrome. Although the photostationary equilibrium (Pr to Pfr ratio) was not altered by deuterium oxide, in contrast to degraded phytochrome, the rate constants of both transformations, Pr→ Pfr and Pfr→ Pr were enhanced by up to 24%. The Pr to Pfr phototransformation of degraded phytochrome, however, was retarded by about the same percentage in D2O. These opposite effects of D2O with degraded and undegraded phytochromes underscore the fact that the Pr form from the former reverts to the Pr form in the dark, apparently catalyzed by deuterated general and/or conjugate acidic group(s). With the degraded phytochrome the deuterium oxide enhancement of the rate of dark reversion was approximately 2-fold (Sarkar and Song, 1981). Both the fluorescence intensity and the rates of phototransformation of phytochrome were enhanced in D2O with successive photocyclings (Pr→ Pfr→ Pr→ Pfr→ Pr etc.) with alternating red and far-red irradiation. It has been proposed that successive photocycling of phytochrome in D2O results in proton-deuteron exchange in the partially exposed Ptr chromophore and/or its surrounding amino acid residues.  相似文献   

2.
Several possible origins of the complex phytochrome red to far-red light-absorbing phytochrome (Pr Pfr) phototransformation kinetics in the nanosecond-to-second time range have been examined. Heterogeneity based on protein sequence is ruled out as an origin of the multi-component kinetics because recombinant 124 kDa oat phytochrome A apoprotein reconstituted with phytochro-mobilin and the native protein are very similar in this regard throughout this time range. The Pr forms of native 124 kDa oat phytochrome A and of a homogeneous recombinant 65 kDa chromoprotein fragment exhibit thermochromic properties interpreted as arising in each case from the presence of two Pr species in thermal equilibrium. They exhibit identical photochemical properties. The complex kinetics therefore cannot result from Pr heterogeneity either. Thus, the presence of two Pr forms in equilibrium (Pr,675 and Pr,655) and the complex multiex-ponential PrPfr phototransformation kinetics observed in all time ranges are intrinsic properties of the homogeneous holoprotein of oat phytochrome A.  相似文献   

3.
Abstract— Effect of red-light irradiation on the medium pH at 10d?C was measured and compared among unbuffered solutions of the 121-kDa native pea (Pisum sativum cv. Alaska) phytochrome and its 114- and 62-kDa fragments in a red-light-absorbing form (Pr), all of which converted to far-red-light-absorbing form (Pfr) on red-light irradiation. Red-light irradiation induced alkalinization in the solutions of the phytochrome and the fragments in the pH range 6.6-7.2 and 6.2-7.8, respectively. The amount of protons taken up by the 121-kDa phytochrome was less than one half of that of the 114-kDa fragment. Red-light irradiation induced acidification in the solutions of the 114- and the 62-kDa fragments above pH 7.8. In the solutions of the 121-kDa phytochrome, however, the irradiation induced no pH change at pH 7.2-8.2, and only a slight acidification at pH 8.2-8.7, which may be ascribed to a small amount of contamination from the 114-kDa fragment. All these red-light-induced pH changes were reversible following exposure to far-red light. The 7-kDa polypeptide(s) of the native 121-kDa phytochrome, which is lacking in the 114-kDa fragment, thus, prohibited proton transfer between phytochrome and the medium. A red-light-induced pH change was also measured in unbuffered solutions of the 39-kDa fragment of the phytochrome and of the 114-kDa fragment in the presence of 0.8 mM soyasaponin I. The 39-kDa fragment showed partially photoreversible conversion between a spectral form having an absorption maximum at 659 nm (P659) and a bleached form, P***. The 114-kDa fragment in the presence of the saponin showed a photoreversible conversion between P65V and Pb,. Exposure of P659 from the 39-kDa fragment and from the 114-kDa fragment in the presence of the saponin to red light, caused acidification of the medium in the pH range 6.8-8.8 and 7.2-9.0, respectively, but no change at pH 6.2-6.8 and 6.4-7.2, respectively. The acidification of the latter was reversible following a far-red-light irradiation, but that of the former was only partially photoreversible. Proton uptake of phytochrome was inhibited by tryptic degradation to the 39-kDa fragment and also by the presence of the saponin. Only proton release was observed during the photoconversion from P659 and P***hl. It is suggested that a phytochrome molecule has possible site(s) for both proton release and for uptake and that the proton release reaction may be correlated to the photoconversion process(es) prior to the bleached intermediate (I***) of phytochrome.  相似文献   

4.
The predominant, immunochemically-detectable phytochrome polypeptide rapidly extracted directly into boiling sodium dodecyl sulfate-containing buffer from fresh or freeze-dried green Avena tissue has an apparent molecular mass of 118 kilodaltons (kDa). This result indicates that the 118-kDa phytochrome species obtained from green Avena by extraction and rapid processing under non-denaturing conditions in previous studies was not derived by partial proteolysis of a larger polypeptide present in the cell. Additional data do, however, demonstrate the presence in green tissue homogenates of proteolytic activity that can cause a = 6-kDa reduction in apparent molecular mass and a blue-shift in the Pfr absorbance maximum of phytochrome during handling. This proteolytic activity contrasts with that previously encountered in etiolated tissue in that it is not inhibited by phenylmethylsulfonyl fluoride, but is inhibited by iodoacetamide and leupeptin. This result indicates that the activity is associated with a thiol-like protease. A partial purification procedure that incorporates the use of iodacetamide and a novel chromatographic step is described for green-tissue phytochrome. This procedure provides 50% recovery with a 90-fold enrichment of phytochrome relative to the initial extract in which the chromoprotein is 0.003% of the total soluble protein. The final fraction is apparently free of proteolytic activity. Immunoblot analysis of this fraction demonstrates that the predominant immunoreactive band has a monomeric molecular mass of 118 kDa. Comigration of this band with a band exhibiting zinc-induced fluorescence on blots of the partially purified preparations verifies that the 118-kDa species is the principal tetrapyrrole-bearing polypeptide present. Spectral properties of the final fraction are identical to those published for crude green-tissue extracts, indicating the stability of the molecule's spectral properties throughout the procedure. Size exclusion chromatography under nondenaturing conditions shows that the 118-kDa phytochrome species from green tissue comigrates with the dimeric, etiolated-tissue molecule, and is therefore suggestive of similar quaternary structure. Together these data reinforce previous conclusions that the predominant phytochrome molecule present in the living cells of green tissue is resolvable as a 118-kDa species, distinct from the well-characterized 124-kDa molecule from etiolated tissue (Tokuhisa et al., 1985, Planta 164, 321–332), and indicate that the partial purification protocol described here sustains the green-tissue phytochrome in its native state throughout the procedure.  相似文献   

5.
Abstract— A 15 ns, tunable dye laser was used to induce germination of the photoblastic seeds of Lactuca sativa. One red laser flash in the range from 620 to 690 nm was sufficient to increase germination significantly above the dark level. Repeated flashes, however, were necessary to saturate the physiological response. The wavelength dependence for induction of germination differed for single and repetitive flashes. After saturating far-red irradiation, the effect of single-flash induction was a function primarily of the absorption spectrum of Pr. In addition, the establishment within the lifetime of a flash of a photochromic system between the red absorbing form of phytochrome (Pr) and the sum of photoreversible intermediate forms (ΣI700) contributes to this wavelength dependence at high fluence rates. This photochromic system is assumed to be shifted significantly toward Pr by wavelengths 660 nm. Similarly, a strong double-flash effect, which is seen as an increase in effectiveness when a given total fluence is provided by two consecutive flashes rather than by one flash only, is restricted to those wavelengths that considerably shift the photochromic system Pr?ΣI700 toward Pr. Finally, the saturation level produced by a series of laser flashes depends, additionally, on absorption by Pfr.  相似文献   

6.
Abstract— Kinetics of the destruction of the far red absorbing form of phytochrome (Pfr), measured by in vivo spectroscopy, show two phases: after a saturating red light pulse, rapid first order decay results in the loss of most, but not all, of the detectable Prr; decay of the rest is much slower. The concentration of the more stable Pfr is positively correlated to the concentration of the total Pfr established at time zero. The linear relationship between total and ‘stable’ Pfr exludes the existence of a threshold level of Pfr for fast destruction. Photoconversion of the Pr (red absorbing form of phytochrome) present during the slow decay, by exposure to a second light pulse, is followed by fast destruction of most of the newly formed P,r, whereas some Pfr formed by the first pulse still remains. The experiment suggests that not all Pfr molecules are accessible to the same destruction mechanism, i.e. there are two populations of PfI.  相似文献   

7.
Abstract Fluorescence of phytochrome is found in the cells of etiolated monocotyledonous and dicotyledonous plants. The red light-absorbing form of phytochrome (Pr) fluoresces at 77 K with a yield 0.3±0.1 and maxima at 672–673 nm and 684–686 nm in the excitation and emission spectra, respectively. The emission is characterized by the sharp temperature dependence of its intensity, its high (~ 40%) polarization, and the violation of the mirror symmetry rule. Connection of the fluorescence with Pr photoreactions is followed in the interval 77–293 K. A P, photoproduct, lumi-R, is fluorescent with maxima at 696 nm and 705 nm in the excitation and emission spectra; the far-red light absorbing form of phytochrome (Pfr) is practically nonfluorescent. Three isochromic emitting Pr species are present differing in their photochemical properties: Pr1 and Pr2 which phototransform irreversibly and reversibly at T 170 K into lumi-R, and lumi-R2, respectively, and Pr3 which undergoes photoconversion only at T > 240 K. The activation energies of Pr2 and Pr3 photoreactions are evaluated to be 2.9–3.3 kJ/mol and 26 kJ/mol. Complex dynamics of changes of Pr fluorescence and of the extent of its decrease in the photoconversion Pr? Pfr in germinating pea and bean seeds suggests the existence of two Pr pools one of which is incapable of Pr? Pfr phototransformation. Thus, the developed fluorescent method of phytochrome assay and investigation in the cell revealing multiplicity of phytochrome states in vivo proves to be very sensitive (about 1 ng) and informative.  相似文献   

8.
Abstract— A method is described to determine spectral properties of phytochrome in vivo. For photochrome in 7-day-old dark-grown Cucurbita pepo L. seedlings the mole fraction of the far-red-absorbing form (Pfr) present at photoequilibrium at 664 nm was found to be 0.76 ± 0.02 in vivo. Based on reflectance measurements, the photon fluence rate just below the surface of the cotyledons was calculated. Local rates of photoconversion for known local fluence rates were measured across cotyledons after non-saturating irradiations with wavelengths between 544 and 781 nm and in situ molar photoconversion coefficients were obtained. In contrast to purified oat phytochrome, the in situ molar photoconversion coefficients for Pfr show a strong shoulder between 660 and 700 nm. The maximum of Pfr absorption is at 726 nm. An isosbestic point of phytochrome is found at 686 nm. The mole fraction of Pfr present at photoequilibrium with 686 nm light is 0.58. The ratio of photoconversion quantum yields (that for Pr→ Pfr divided by that for Pfr→ Pr) is 1.38 ± 0.06.  相似文献   

9.
Stabilization of phytochrome intermediates by low temperature   总被引:6,自引:0,他引:6  
Abstract— The photocon versions between the red-absorbing form (Pr) and the far-red absorbing form (Pfr) of phytochrome were examined at low temperatures. Partially purified preparations of the chromoprotein were examined in phosphate buffer and in 25 per cent buffer plus 75 per cent glycerol. Actinic irradiation of P, below – 150°C produces an intermediate with maximum absorbance near 695 nm, R695. Actinic irradiation of R695 converts it back to P. Above – 150°C R695 decays to a low extinction form of phytochrome, R, which in turn decays to Pfr upon further warming. Light absorption by Pfr below – 150°C results in the formation of an intermediate form of phytochrome with maximum absorbance near 660 nm, FR660. FR660 decays upon warming to a lower extinction form, FR'. which in turn decays to Pr on continued warming. No evidence was obtained to suggest that any of the observed intermediate states are involved in more than one direction of phytochrome photocon version.  相似文献   

10.
Abstract— The kinetics of the far-red absorbing form of phytochrome (Pfr) appearance from intermediates in the pathway from the red absorbing form of phytochrome (Pr) to Pfr that accumulate under high fluence rate white light have been investigated in 3-day old dark grown Amaranthus caudatus seedlings. The appearance of P(r after a 5 s white light pulse was measured over the temperature range -8 to 25°C in samples flushed with O2 or N2. Over the whole temperature range under anaerobic conditions the kinetics of the slowest component of Pfr appearance are faster than in the presence of O2. Arrhenius plots are linear over this temperature range and indicate the activation energy for the slowest component of Pfr appearance is 44.05 ± 1.97 kJ mol?1 for O2 and 53.69 ± 4.86 kJ mol?1 for N2.  相似文献   

11.
Abstract— Sensitization of the phytochrome-mediated germination at 20°C of lettuce seeds (Lactuca sativa L. cv. Grand Rapids) by pretreatment at 4°C, 28°C, or on 1% ethanol, was studied. The 660 nm fiuence-response characteristics were similarly biphasic for all sensitizing treatments and displayed responses at very low fluences (VLFR) as well as responses characteristic of non-sensitized seeds at 10000-fold higher, low fluences (LFR). Maximum VLFR increased with the duration of sensitizing treatments. However, the fluence ranges required for the two types of responses remained relatively constant. These and additonal responses of sensitized seeds to 730 nm fluences were compared to simulations of a mechanism involving a receptor, X, and based on the dimeric structure of phytochrome in which each monomer is independently phototransformed from the inactive (Pr) to the active (Pfr) form. The fluence requirements for phytochrome photoconversion in seeds were determined to be similar to those of purified Avena phytochrome in vitro, on which photochemical parameters for the simulations were based. The analyses suggest that Pr:Pfr-Xand Pfr:Pfr-X are responsible, respectively, for the VLFR and the LFR, and that sensitization involves membrane influences on the activity of Pr:Pr-X. They also suggest the concentration of X to be about 0.001 that of total phytochrome dimer in this system.  相似文献   

12.
Abstract— De-etiolation of maize seedlings reduces their sensitivity for red light potentiation of rapid chlorophyll accumulation in white light. An earlier proposal (Raven and Spruit, 1973) attributes this to migration of the far-red absorbing form of phytochrome (Pfr) to receptors essential for chlorophyll synthesis, thereby increasing the local Pfr/total phytochrome (Ptot)ratio. We have studied etioplasts as possible loci for such P(r receptors. The level of spectrophotometric phytochrome in purified etioplasts isolated from red preirradiated maize seedlings was higher than that of dark grown plants. The difference was marginally significant, however. We argue that migration of a fraction of cytoplasmic Pfr to the etioplasts, too small to be spectrophotometically demonstrable, could still meet the requirements of the model. Dark destruction of bulk spectrophotometric Pfr following saturating red irradiation of seedlings is not paralleled by a decrease of etioplast phytochrome. the latter remaining essentially constant over long periods. On the other hand, the potentiating effect of red light in intact seedlings is still partially reversible by far red light even after 24 h of darkness when destruction of bulk Pfr is complete. Since this demonstrates persistent presence of Pfr active in potentiation, we propose that at least part of this Pfr is associated with the etioplasts.  相似文献   

13.
Abstract— Spores of Dryopteris paleacea and D. filix-mas are positively photoblastic with an optimum in the action spectrum around 665 nm. Light is perceived by phytochrome and the relationship between germination and mole fraction of the far-red-absorbing form of this pigment, Pfr, was investigated with saturating irradiations between 662 and 747 nm under low-fluence-rate conditions. These control irradiations establish a proportion of the total phytochrome, P,tot, as Pfr with Pfr/Ptot–φ at equilibrium. These φ -values were calculated according to data for native oat phytochrome (Kelly and Lagarias, 1985, Biochemistry 24, 6003) and the spectral characteristics of the interference filters. With this method a linear relationship could be found between φ and germination from 2 to 70% for D. paleacea and from 2 to 90% for D. filix-mas, if probit germination was plotted vs probit φ This correlation formed the basis of investigating the phytochrome photoconversion by dye-laser pulses of 380 ± 30 ns under high-fluence-rate conditions, and thus to test quantitatively the impact of the photoreversibility of intermediate reactions of the photoconversion and the red-absorbing form of phytochrome, Pfr on the final Pfr-level. Spore germination was initiated by a single-laser pulse in the range from 592 to 700 nm. The most effective wavelengths were 649 and 660 nm in both species, and at saturation maximal germination (ca. 50%) was obtained from 592 to 665 nm for D. paleacea or ca. 60% germination from 592 to 670 nm for D. filix-mas. Both saturation levels correspond to a ø-value between 0.40 and 0.45. This significantly diminished photoconversion is a consequence of the high-fluence-rate conditions during the laser pulse which establishes the photochromic system between Pr and a set of very early intermediates, Ii700, (= Pr? Ii700). This system can be described by the extinction coefficients of Pr and the intermediates Ii700, and by the quantum yields, 4,φ for the forward and reverse reactions as φ If φ is calculated, assuming a quantum yield of 1:1 for both reactions and with the extinction coefficients of Pr and Ii7(l() (= lumi-R) given by Eilfeld and Riidiger (1985, Z. Naturforsch. 40c , 109), significantly higher values are calculated for / as compared to φ found in the control experiments. These results can be explained either: (i) with a quantum yield ratio φpr-φ1700: φ1700φpr=1:1 and an assumed additional dark reaction leading from Ii700 or later intermediates back to Pr: or (ii) with a quantum yield ratio φpr φ 1700: φ1700 φpr=1:2. In this case all Ii700 have to relax to Pfr. In this case all Ii700 have to relax to Pfr.  相似文献   

14.
Abstract— Apparent synthesis* of the enzyme lipoxygenase in the cotyledons of the mustard seedling (Sinapis alba L.) is controlled by phytochrome (Pfr ground state)? through a threshold (all-or-none) mechanism. This response was used to determine physiologically the photostationary states, Λ that is, the [Pfr]/[Ptot] ratios established by different wavelengths in the red and far-red range of the spectrum, including the standard red and far-red sources used in this laboratory (Mohr, 1966). Under the premises (for which justification has been given on previous occasions) that the [Pfr]/[Ptot] ratio for standard red light is 0.8, and that the decay of Pfr is a first-order process with a half-life of 45 min, the [Pfr]/[Ptot] ratios determined physiologically by means of the lipoxygenase response agree with the [Pfr]/[Ptot] ratios determined spectrophotometrically by Hartmann and Spruit (cf. Fig. 9 in Hanke et al., 1969) in hypocotyl hooks of mustard seedlings. In the hook the fr, that is, the [Pfr]/[Ptot] ratio for standard far-red, is found to be 0.023. In the cotyledons, this ratio is several times higher (Schafer et al., 1972). The conclusion that apparent lipoxygenase synthesis in the cotyledons is controlled by phytochrome located in the hook has been substantiated by further spectrophotometric (Schäfer et al., 1973) and physiological experiments (H. Oelze-Karow and H. Mohr, in preparation). The minimum steepness of the threshold was determined. An increase of the Pfr level from 118 (relative units) to 130 leads to an instantaneous and total suppression of apparent lipoxygenase synthesis; a corresponding decrease from 130 (relative units) to 118 leads to an immediate resumption of apparent LOG synthesis at full speed. It is concluded that an explanation of the experimental facts requires a cooperative effect on the level of Pfr, a high degree of synchrony on the cellular and organismic level and rapid communication between the hypocotyl hook and the cotyledons. *The term ‘apparent synthesis’ is used operationally in the present paper to denote any increase of enzyme activity, although de novo synthesis of lipoxygenase has not so far been rigorously demonstrated. The usual inhibitor experiments (cf. Oelze-Karow et al., 1970) have led to the conclusion that intact RNA and protein synthesis is required for an increase of lipoxygenase activity.  相似文献   

15.
A comparative study of the decay kinetics of photogenerated transients from small (60 kDalton) and native (124 kDalton) oat phytochrome in the red-absorbing form (Pr) in phosphate buffer containing 5 mM ethylenediamine tetraacetic acid, pH 7.8, (PB) and in PB containing 20% ethylene glycol, has been carried out in the temperature range 275–298 K. The analysis confirmed that at least two primary photoproducts, intermediates Ii700s and Ii7oo are formed from Pr. The kinetic parameters, as observed in PB at 695 nm and 275 K, are similar for the I700 intermediates of both small and native phytochrome. Namely, the lifetimes are about 21 μs (component percentages 38%) for the I Ii700s and about 200 μ.s (62%) for the Ii700S- Arrhenius preexponential factors (A) of about 1016 and 1015 s-1and activation energies of about 61 and 56 kJ/mol were measured for the absorbance decays of the I700S of small and native phytochrome, respectively. The kinetic data favour parallel paths for the formation of the Ii700s from Pr, and the activation parameters indicate that the primary photoreactions of the transformation from Pr to the far-red-absorbing form are restricted to the chromophore within the protein. Moreover, the relatively modest temperature dependence of the lifetimes of the Ii700S from small and native Pr supports the working hypothesis that the ground state reactions to the Iibl, intermediates–although somewhat influenced by the polypeptide fragment that is removed upon degradation of native to small Pr–are localized to the chromophore, as is most probably the case also for the primary photoreactions. The effect of the addition of 20% ethylene glycol on the pre-exponential factors of the time-dependent decay functions is discussed in similar terms of the early stages of the phototransformation.  相似文献   

16.
After excitation at room temperature with a 15 ns dye laser pulse, phytochrome (60 kDalton) from etiolated oat seedlings was studied by optoacoustic spectroscopy, which records the heat emission caused by non-radiative deactivation processes of the photoexcited molecule. The action spectrum for the heat emitted by Pr deviates from the absorption spectrum around 610 and 695 nm, indicating the build-up of photoproduct(s) within 15 ns after excitation. It is proposed that the 695 nm product is identical with I700 and lumi-R known to be the first intermediate on the Pr× Pfr pathway, and that the photochemical back reaction of I700 to Pr occurs on the same time scale. About 90% of the absorbed light energy was lost by radiationless deactivation. Values for the rate constants of excited state deactivation of Pr and for the internal energy content difference of the primary photoproducts are calculated.  相似文献   

17.
Abstract— –The kinetics of phytochrome destruction in vivo of coleoptiles and mesocotyls of etiolated grass seedlings (Avena sativa L., Zea mays L.) in continuous light were investigated using wavelength and irradiance as experimental variables. In contrast to dicotyledonous seedlings, the destruction reaction of these monocotyledons is saturated at very low levels of the far-red absorbing form of phytochrome, Pfr (e.g. at 1% of total phytochrome, corresponding to the photostationary state established by 727 nm light, in 2.5-day-old dark-grown Avena). On the other hand, the first-order rate constant of monocotyledon destruction may be at least one order of magnitude larger than in dicots, as indicated by the zero-order rate measured in the presence of saturating amounts of Pfrl/2 1.5 min in Avena). At sub-saturation Pfr levels, the destruction rate was found to be determined by the rate constants of the photoreactions over a wide range of wavelengths and irradiances. These results can be interpreted in terms of a destruction enzyme with high catalytic efficiency but limited availability. Analysis of in vivo binding of phytochrome to a pelletable cell structure during destruction revealed that both the pelletable and the non-pelletable fraction lose photoreversiblility with similar rates and thus provide no useful information with respect to a causal relationship between the two processes. However, due to the short half-life of Pfr at sub-saturation levels (which make the photoreactions and intermediary processes rate-limiting for destruction even at relatively high irradiances) the existence of a similarly rapid dark-reaction between the photoreactions producing Pfr and the destruction reaction could be demonstrated. This dark reaction displays the properties of Pfr binding to a receptor site.  相似文献   

18.
The molecular topography of phytochrome: chromophore and apoprotein   总被引:3,自引:0,他引:3  
Phytochrome serves as the photochromic receptor for a number of morphogenic and developmental responses to red light in higher plants. The photoreversible phototransformation of 124 kDa oat phytochrome involves several structural changes in the chromophore and the apoprotein, including a configurational/conformational isomerization and secondary/tertiary structural changes respectively. For example, there appears to be a specific interaction between the chromophore and the amino terminus segment in the Pfr form of phytochrome, which results in a photoreversible peptide folding of the amino terminus peptide chain. Other structural changes also accompany the phototransformation, as has been probed by peptide mapping, phosphorylation, and monoclonal antibodies.  相似文献   

19.
PHYTOCHROME ACTION: A REAPPRAISAL   总被引:4,自引:0,他引:4  
Stems of fully green plants show at least two types of response to light. In one, Pfr inhibits elongation. The second is a promotion of elongation which operates only in light; the effectiveness of red and far-red wavelengths indicates that this response is also mediated through phytochrome. Studies of the de-etiolation process also provide evidence for two modes of action of phytochrome; one is a Pfr-dependent reaction, and the second requires continuous light (or frequent short irradiations). It is proposed that, in addition to reactions which require Pfr and proceed in darkness, an important reaction of phytochrome in green plants occurs only in light. We have termed these two modes of action of phytochrome “static” and “dynamic”. The static mode operates after a brief exposure to light which establishes Pfr; the potential responses are largely reversible by far-red and exhibit reciprocity. The dynamic mode operates only in light and the responses do not show reciprocity. We consider that this mode operates through the transition from one bound form of phytochrome to another. The possible involvement of these two modes of action of phytochrome in photoperiodic mechanisms is discussed.  相似文献   

20.
Two non-photosynthetic photoreceptors (phytochrome and a blue light photoreceptor) are involved in light-mediated anthocyanin synthesis in the mesocotyl of Sorghum seedlings. The present study was undertaken to investigate the kind of interaction between phytochrome and the blue light photoreceptor. The data show that phytochrome (Pfr) can only act once a blue light effect has occurred. On the other hand, the blue light effect cannot express itself without Pfr. It is concluded that there is an obligatory dependency (or sequential interaction) between the blue light effect and the light effect occurring through phytochrome, although the blue light photoreaction per se is not affected by the presence or absence of phytochrome. The latter statement is based on the results of dichromatic experiments, i.e. simultaneous, high fluence rate irradiation with two kinds of light. Blue light can be replaced by UV light. It is not clarified yet whether the effect of blue and UV light is due to the same photoreceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号