首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We employ retro models, cis-PtA2G2 (A2 = a diamine, G = guanine derivative), to assess the cross-linked head-to-head (HH) form of the cisplatin-DNA d(GpG) adduct widely postulated to be responsible for the anticancer activity. Retro models are designed to have minimal dynamic motion to overcome problems recognized in models derived from cisplatin [A2 = (NH3)2]; the latter models are difficult to understand due to rapid rotation of G bases about the Pt-N7 bond in solution and the dominance of the head-to-tail (HT) form in the solid. Observation of an HH form is unusual for cis-PtA2G2 models. Recently, we found the first HH forms for a cis-PtA2G2 model with A2 lacking NH groups in a study of new Me2ppzPtG2 models. (Me2ppz, N,N'-dimethylpiperazine, has inplane bulk which reduces dynamic motion by clashing with the G O6 as the base rotates into the coordination plane from the ground state position approximately perpendicular to this plane G = 5'-GMP and 3'-GMP.) The finding of an HH form (albeit in a mixture with HT forms) with both G H8 signals unusually downfield encouraged us to study additional Me2ppzPtG2 analogues in order to explain the unusual spectral features and to identify factors that influence the relative stability of HT and HH forms. Molecular modeling techniques suggest HH structures with the H8's close to the deshielding region of the z axis of the magnetically anisotropic Pt atom, explaining the atypical shift pattern. When G = 1-Me-5'-GMP, we obtained NMR evidence that the HH rotamer has a high abundance (34%) and that the three rotamers have nearly equal abundance. These findings and the observation that the relative HT distributions varied little or not at all as a function of pH when G = Guo, 1-MeGuo, or 1-Me-5'-GMP are consistent with two of our earlier proposals concerning phosphate groups in HT forms of cis-PtA2(GMP)2 complexes. We proposed that a G phosphate group can form hydrogen bonds with the cis G N1H ("second-sphere" communication) and (for 5'-phosphate) A2 NH groups. The new results with 1-Me-5'-GMP led us to propose a new role for a 5'-phosphate group; it can also favor the HH form by counteracting the natural preference for the G bases to adopt an HT orientation. Finally, the HH form was also sufficiently abundant to allow observation of a distinct 195Pt NMR signal (downfield of the resonance observed for the HT forms) for several complexes. This is the first report of an HH 195Pt NMR signal for cis-PtA2G2 complexes.  相似文献   

2.
Summary FeIII complexes of a tetradentate ligand with pendant benzimidazolyl groups have been synthesized and characterized. Room temperature Mössbauer spectra depict a quadruple split doublet in the case of NO inf3 p– as co-ligand, while a nearly symmetrical one line spectrum is obtained for complexes with Clas co-ligand. The isomer shift values are towards the lower end of the range found for other high spin FeIII complexes. 1H-n.m.r. spectra of the complexes reveal relatively broad linewidths with large isotropic shifts. Paramagnetically shifted resonances are observed in the range of –10.0–+70.0 p.p.m.Author to whom all correspondence should be directed.  相似文献   

3.
A five-coordinate copper complex with the tripod ligand tris(1H-benzimidazol-2-ylmethyl)amine (ntb), of composition [Cu(ntb)(H2O)] (C1O4)2?·?C5H4N2O3?·?H2O (C5H4N2O3?=?4-nitropyridine-N-oxide), was synthesized and characterized by means of elemental analyses, electrical conductivities, thermal analyses, IR, and U.V. The crystal structure of the copper complex has been determined by single-crystal X-ray diffraction, and shows that the CuII is bonded to a tris(1H-benzimidazol-2-ylmethyl)amine (ntb) ligand and a water molecule through four N atoms and one O atom, giving a distorted trigonal–bipyramidal coordination geometry with approximate C 3 molecular symmetry. Cyclic voltammograms of the copper complex indicate a quasi-reversible Cu+2/Cu+ couple. Electron spin resonance data confirm a trigonal-bipyramidal structure and with g 2?<?g ζ and a very small value of A 2 (20?×?10?4?cm?1).  相似文献   

4.
The geometries, electronic structures, and spectroscopic properties of a series of novel cationic iridium(III) complexes [trans-(C/N)(2)Ir(PH(3))(2)]+ (C/N = 2-phenylpyridine, 1; benzoquinoline, 2; 1-phenylpytazolato, 3; 2-(4,6-difluorophenyl)pyridimato, 4) were investigated theoretically. The ground- and excited-state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. The optimized geometry structural parameters agree well with the corresponding experimental results. The unoccupied molecular orbitals are dominantly localized on the C/N ligand, while the occupied molecular orbitals are composed of Ir atom and C/N ligand. Under the time-dependent density functional theory (TDDFT) level with the polarized continuum model (PCM) model, the absorption and phosphorescence in acetonitrile (MeCN) media were calculated based on the optimized ground- and excited-state geometries, respectively. The calculated results showed that the lowest-lying absorptions at 364 nm (1), 389 nm (2), 317 nm (3), and 344 nm (4) are all attributed to a {[d(yz)(Ir) + pi(C/N)] --> [pi*(C/N)]} transition with metal-to-ligand and intraligand charge transfer (MLCT/ILCT) characters; moreover, the phosphorescence at 460 (1) and 442 nm (4) originates from the 3{[d(yz)(Ir) + pi(C/N)] [pi*(C/N)]} (3)MLCT/(3)ILCT excited state, while that at 505 (2) and 399 nm (3) can be described as originating from different types of (3)MLCT/(3)ILCT excited state (3){[d(xy)(Ir) + pi(C/N)] [pi*(C/N)]}. The calculated results also revealed that the absorption and emission transition character can be altered by adjusting the pi electron-withdrawing groups and, furthermore, suggested that the phosphorescent color can be tuned by changing the pi-conjugation effect of the C/N ligand.  相似文献   

5.
6.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

7.
A series of novel neutral pentacoordinate silicon(IV) complexes with SiClSN(2)C, SiBrSN(2)C, SiSN(3)C, SiSON(2)C, SiS(2)N(2)C, SiSeSN(2)C and SiTeSN(2)C skeletons (compounds 1-12) was synthesised, starting from PhSiCl(3), PhSiBr(3), PhSi(NCO)(3), MeSiCl(3) or C(6)F(5)SiCl(3). Compounds 1-12 contain (i) a tridentate dianionic N,N,S chelate ligand (derived from 2-{[(pyridin-2-yl)methyl]amino}benzenethiol), (ii) a phenyl, methyl or pentafluorophenyl group and (iii) a monodentate monoanionic ligand (Cl, Br, NCO, NCS, N(3), OS(O)(2)CF(3), OPh, SPh, SePh, TePh). The pentacoordinate silicon(iv) complexes 1-12 were characterised by elemental analyses, NMR spectroscopic studies in the solid state and in solution and crystal structure analyses. These experimental investigations were complemented by computational studies.  相似文献   

8.
A seven-coordinate manganese(II) complex with the tripod tetradentate ligand tris(N-methylbenzimidazol-2-ylmethyl)amine (Mentb), [Mn(Mentb)(salicylate)(DMF)](ClO4) ? (DMF), was synthesized and characterized by elemental, electrical conductivity, infrared, and UV-Vis spectral measurements. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. MnII is bonded to a Mentb, a salicylate and dimethylformamide through four nitrogens and three oxygens, resulting in seven-coordination. Cyclic voltammograms of the complex indicate a quasi-reversible Mn3+/Mn2+ couple. The X-band electron paramagnetic resonance spectrum exhibits a six-line manganese hyperfine pattern with g = 2, A = 93, confirming that the material is high-spin Mn(II).  相似文献   

9.
In the reaction of TAS-fluoride, (Me2N)3S+Me3SiF2-, with carbonyl sulfur difluoride imides RC(O)NSF2 (R = F, CF3), C-N bond, cleavage is observed, and TAS+RC(O)F2- and NSF are the final products. From TASF and RC(O)NS(CF3)F, the salts TAS+RC(O)NS(CF3)F2- (R = F (14), CF3 (15)), with psi-pentacoordinate sulfur centers in the anions, are formed. An X-ray structure investigation of 14 shows that the fluorine atoms occupy axial positions and CF3, NC(O)F, and the sulfur lone pair occupy equatorial positions of the trigonal bipyramid. The -C(O)F group lies in the equatorial plane with the CO bond synperiplanar to the SN bond. According to B3LYP calculations, this structure corresponds to a global minimum and the expected axial orientation of the -C(O)F group represents a transition state. Calculations for the unstable FC(O)NSF3- anion show a different geometry. The -C(O)F group deviates 40 degrees from axial orientation, and the equatorially bonded fluorine is, in contrast to the -CF3 group in 14, syn positioned.  相似文献   

10.
N,N'-Dicyanonaphthoquinodiimines fused with a pyrazine ring 1 were prepared from the corresponding quinones 4. The new acceptors 1 have a planar pi-system and undergo reversible two-stage 1e-reduction. Quaternization of the pyridyl substituent in 1d-f gave pyridinium derivatives 2d+, 2e+, and R-3+, respectively, which are stronger acceptors that undergo three-stage 1e-reduction. Upon electrochemical reduction of these cations, novel radicals 2d., 2e., and R-3. were generated and isolated as stable solids. The molecular geometries determined by X-ray analysis indicated that these radicals adopt a zwitterionic structure, in which the unpaired electron is located on the quinodiimine unit but not on the pyridyl group. These novel radicals undergo facile and reversible 1e-oxidation as well as two-stage 1e-reduction. The observed amphotericity endows the radicals with electrical conductivities (10(-5) to 10(-9) S cm-1), and these thus represent a new motif for single-component organic semiconductors.  相似文献   

11.
Tris(N-ethylbenzimidazol-2-ylmethyl)amine (Etntb), [Mn(Etntb)(DMF)(H2O)](pic)2 (1), and [Ni(Etntb)(DMF)(H2O)](pic)2 (2) (pic?=?picrate) have been synthesized and characterized by elemental analyses, molar conductivities, UV–Visible spectra, and IR spectra. Single-crystal X-ray diffraction revealed that the complexes have the same arrangement with distorted octahedral coordination geometries. DNA-binding properties of the free ligand, 1, and 2 have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that the ligand and its complexes bind DNA via intercalation, and their binding affinity for DNA follows the order 2?>?1?> ligand.  相似文献   

12.
A series of new ligands with three pyridines linked into a macrocycle by various CH(2), CMe(2), and CH(2)CH(2) groups at all sites ortho to the pyridine nitrogen have been synthesized and attached to PdCl(2) or PtMe(2). The ligands bind to them through only two nitrogens, and the third pyridine is constrained in close proximity to the planar complex with a filled d(z)2 orbital. Rapid reversible migration of PdCl(2) or PtMe(2) to the unused pyridine nitrogen is observed at 20 degrees C in the case of the CH(2)-bridged macrocycle and does not occur in the case of the CMe(2)-bridged analogue, and the mechanism of this fluxionality has been established by NMR and computational techniques.  相似文献   

13.
Emergence of chloroquine (CQ)-resistant Plasmodium falciparum strains necessitates discovery of potent and inexpensive antimalarial drugs. The high cost of new drugs negatively impacts their access and distribution in the regions of the world with scarce economic resources. While exploring structure-activity relationships, using gallium(III) as a surrogate marker for iron(III), we found cationic, and moderately hydrophobic, compounds, [[1,12-bis(2-hydroxy-3-ethyl-benzyl)-1,5,8,12-tetraazadodecane]metal(III)](+) (metal = Fe(III) and Ga(III); [Fe-3-Eadd](+), 3; [Ga-3-Eadd](+), 4), that possessed antimalarial activity. Crystal structure analyses revealed octahedral geometry for these complexes. The RP-HPLC analysis, after incubation in PBS or HEPES buffer (pH 7.4) at 37 degrees C for 3 days, detected only parental compounds thereby providing evidence for stability under physiological conditions. Both 3 and 4 demonstrated promising half-maximum inhibitory concentration (IC(50)) values of approximately 80 and 86 nM in the CQ-sensitive HB-3 line, respectively. However, both 3 and 4 were found to possess elevated IC(50) values of 2.5 and 0.8 microM, respectively, in the CQ-resistant Dd2 line, thus displaying preferential cytotoxicity toward the CQ-sensitive HB3 line. In cultured parasites, 3 and 4 targeted hemozoin formation. Thus, these compounds acted similarly to chloroquine with regard to action and resistance, despite the lack of structural similarity to quinolines. Finally, similarity in coordination chemistry, stability, and antimalarial cytotoxicity profiles indicated that gallium(III) ion can serve as a template for iron(III) in structure elucidation of active molecules in solution.  相似文献   

14.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

15.
The copper(II) complexes 1(H) and 1(Ar(X)), supported by the N,N-di(2-pyridylmethyl)benzylamine tridentate ligand (L(H)) or its derivatives having m-substituted phenyl group at the 6-position of pyridine donor groups (L(Ar(X))), have been prepared, and their reactivity toward H2O2 has been examined in detail at low temperature. Both copper(II) complexes exhibited a novel reactivity in acetone, giving 2-hydroxy-2-hydroperoxypropane (HHPP) adducts 2(H) and 2(Ar(X)), respectively. From 2(Ar(X)), an efficient aromatic ligand hydroxylation took place to give phenolate-copper(II) complexes 4(Ar(X)). Detailed spectroscopic and kinetic analyses have revealed that the reaction proceeds via an electrophilic aromatic substitution mechanism involving copper(II)-carbocation intermediates 3(Ar(X)). Theoretical studies at the density functional theory (DFT) level have strongly implicated conjugate acid/base catalysis in the O-O bond cleavage and C-O bond formation steps that take the peroxo intermediate 2(Ar(X)) to the carbocation intermediate 3(Ar(X)). In contrast to the 2(Ar(X)) cases, the HHPP-adduct 2(H) reacted to give a copper(II)-acetate complex [Cu(II)(L(H))(OAc)](ClO4) (6(H)), in which one of the oxygen atoms of the acetate co-ligand originated from H2O2. In this case, a mechanism involving a Baeyer-Villiger type 1,2-methyl shift from the HHPP-adduct and subsequent ester hydrolysis has been proposed on the basis of DFT calculations; conjugate acid/base catalysis is implicated in the 1,2-methyl shift process as well. In propionitrile, both 1(H) and 1(Ar(X)) afforded simple copper(II)-hydroperoxo complexes LCu(II)-OOH in the reaction with H2O2, demonstrating the significant solvent effect on the reaction between copper(II) complexes and H2O2.  相似文献   

16.
[Cu(bpea)Cl]ClO4 (1) and a new copper(II) complex [Cu(bpma)(Ph-COO)(H2O)]ClO4 (2) [bpea?=?N,N-bis(2-pyridylmethyl)ethylamine; bpma?=?N,N-bis(2-pyridylmethyl)methylamine] have been synthesized. Complex 2 was crystallized in monoclinic space group P21/c with unit cell parameters a ?=?16.460(6)?Å, b ?=?11.222(4)?Å, c?=?12.522(5)?Å, and β?=?97.985(6)°. Interactions of the complexes with calf thymus DNA (CT-DNA) have been investigated by UV absorption, fluorescence, and cyclic voltammetry; thus, modes of CT-DNA binding for the complexes have been proposed. Furthermore, DNA cleavage activities by the complexes were performed in the absence of any external agents. The influence of complex concentration or reaction time on the DNA cleavage was studied.  相似文献   

17.
The novel adduct 1,1,3,3-tetramethylguanidine-gallane, (Me2N)2CN(H).GaH3, has been prepared by the reaction of [(Me2N)2CNH2]+Cl- with LiGaH4 in Et2O solution. Its spectroscopic properties indicate a monomeric species with an unusually strong coordinate link between the imido function and GaH3, an inference confirmed by the crystal structure at 150 K which also reveals significant secondary interactions through non-classical N-H...H-Ga bridges. Despite the intrinsic strength of the Ga-N bond, however, vaporisation at ca. 310 K occurs with partial dissociation, and decomposition via more than one pathway proceeds at temperatures >330-350 K to give a variety of products, including the free base, Me2NH, H2, and a novel gallium-nitrogen compound composed of a Ga4N4 cubane-like core bridged on three edges by -N{C(NMe2)2}GaH2- units.  相似文献   

18.
The complexation of di-(2-pyridylmethyl)amine to RuHCl(PPh(3))(3) affords the salt [RuH{κ(3)N-fac-1,3-di-(2-pyridylmethyl)amine}(PPh(3))(2)]Cl. Reaction with potassium tert-butoxide at room temperature yields the unusual ruthenaziridine complex RuH{κ(3)C(alk)NN(py)-1,3-di-(2-pyridylmethyl)amine}(PPh(3))(2), where the central nitrogen atom, adjacent alkyl carbon, and pyridine arm coordinate to the metal, leaving the second pyridine arm uncoordinated. Surprisingly, heating of this ruthenaziridine complex with concomitant H(2) formation affords the ruthenium azaallyl complex RuH(κ(3)N-1,3-di-(2-pyridyl)-2-azaallyl)(PPh(3))(2). This is a rare example of a 4d metal complex containing the azaallyl ligand. X-Ray crystal structures and NMR characterization of all three compounds are presented herein.  相似文献   

19.
The synthesis of a new oxaaza macrocyclic ligand, L, derived from O(1),O(7)-bis(2-formylphenyl)-1,4,7-trioxaheptane and tren containing an amine terminal pendant arm, and its metal complexation with alkaline earth (M = Ca(2+), Sr(2+), Ba(2+)), transition (M = Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+)), post-transition (M = Pb(2+)), and Y(3+) and lanthanide (M = La(3+), Er(3+)) metal ions are reported. Crystal structures of [H(2)L](ClO(4))(2).3H(2)O, [PbL](ClO(4))(2), and [ZnLCl](ClO(4)).H(2)O are also reported. In the [PbL] complex, the metal ion is located inside the macrocyclic cavity coordinated by all N(4)O(3) donor atoms while, in the [ZnLCl] complex, the metal ion is encapsulated only by the nitrogen atoms present in the ligand. pi-pi interactions in the [H(2)L](ClO(4))(2).3H(2)O and [PbL](ClO(4))(2) structures are observed. Protonation and Zn(2+), Cd(2+), and Cu(2+) complexation were studied by means of potentiometric, UV-vis, and fluorescent emission measurements. The 10-fold fluorescence emission increase observed in the pH range 7-9 in the presence of Zn(2+) leads to L as a good sensor for this biological metal in water solution.  相似文献   

20.
The bluish green binuclear dicarboxylato bridged copper(II) complex [Cu2(HL)2(µ-tp)], 1 has been synthesized, where (HL?) is the monodeprotonated form of N,N-bis(2-hydroxybenzyl)-N′,N′-dimethylethylenediamine and tp = terephthalate dianion. Herein, we report the synthesis, spectral and structural characterization, and magnetic behavior of 1. The coordination geometry of Cu(II) has a distorted square pyramidal geometry (τ = 0.117). The variable temperature magnetic moment reveals that the complex exhibits very weak antiferromagnetic interaction (J Exp = ?0.30 cm?1) and the calculated J value (J Calcd = ?1.05 cm?1) using broken symmetry DFT method is in agreement with the experimentally observed value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号