首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fundamental mechanisms of photochemistry of molecules adsorbed on solid surfaces are revealed from results obtained by a combination of optical techniques, surface probes, and gas phase analysis. While photon-induced processes similar to those in the gas and liquid phase are observed for the adsorbed molecules, the presence of the substrate introduces important channels for energy exchange, dissipation, and adsorbate photochemistry.  相似文献   

2.
The spherical limit of H is studied as an example of the occurrence of a symmetry dilemma of a kind which is a general characteristic of truncated one centre expansions. At internuclear distances just somewhat larger than the equilibrium distance the best spherical approximation turns out to be centred off the molecular midpoint and is thus a mixture of σg and σu. Rather detailed insight into the situation is gained by an analysis based on the electrostatic Hellmann-Feynman theorem.  相似文献   

3.
We discuss molecule-frame and laboratory-frame symmetry-adapted formalisms for electron scattering by a spherical top. The molecule-frame formalism is based on the fixed-nuclear-orientation approximation, both for electronically elastic scattering by a vibrationally rigid molecule and also for the more general case where electronic excitation and vibrational degrees of freedom are included. The laboratory-frame formalism is based on the exact symmetries of the problem, which are carefully related to the approximate symmetries of the molecule-frame treatment. We present both the forward and backward transformations between the two representations.  相似文献   

4.
Electrochemical surface-enhanced hyper-Raman scattering (SEHRS) and surface-enhanced Raman scattering (SERS) of centrosymmetric molecules on Ag film over nanosphere (AgFON) electrodes are presented. The SEHR spectra of trans-1,2-bis(4-pyridyl)ethylene (BPE) at different potentials (vs Ag/AgCl) are presented for the first time, and a reversible potential tuning of the SEHR spectra of BPE is demonstrated. The SEHRS and SERS techniques were used to determine to what extent either site symmetry reduction or field gradient effects dictate the origin of the observed vibrational spectra. It is found that the SEHR and SER spectra for the molecules studied were distinctly different at all frequency regions at a fixed voltage, suggesting that centrosymmetry is largely retained upon adsorption to the AgFON surface and that field gradient effects are negligible. This work also shows that the SEHR spectra clearly depend on potential, whereas the SER spectra are essentially independent of potenial. It is determined that the combination of changes in deltaGads and the presence of coadsorbed counterions are responsible for altering the local symmetry of the adsorbate and only SEHRS has the sensitivity to detect these changes in the surface environment. Thus, SEHRS is a uniquely useful spectroscopic tool that is much more sensitive to the local adsorption environment than is SERS.  相似文献   

5.
A combination of hydrophobic forces and guest templation drive the assembly of cavitands into molecular capsules. Encapsulated guests such as dibenzyl ketones reside in an essentially dry environment, and upon irradiation, undergo rearrangement processes that are templated by the shape of the 1 nm x 2 nm cavity.  相似文献   

6.
7.
8.
One of the most interesting phenomena on Earth is the chirality of biomolecules, the origin of which remains unknown. A challenge arising from this phenomenon is the selective, atom-economic synthesis of enantiomerically pure target molecules from nonchiral starting materials. Herein, new developments in the field of asymmetric photochemistry and photochirogenesis are described with special emphasis on absolute asymmetric synthesis. In this context, the elucidation of the ultimate cause of homochirality phenomena on earth and the possible correlation with physicochemical parameters are also presented.  相似文献   

9.
The photobehavior of fluoroquinolone antibiotics, one of the most successful classes of drugs in therapeutic applications, has recently been the object of increasing interest due to the finding of their phototoxic and photocarcinogenic properties. The main results obtained for a series of structurally related, representative fluoroquinolone drugs is reviewed. Both activation of oxygen and various degradation pathways have been identified and the effects of medium and structure have been rationalized. The results can help in the understanding of the photochemistry occurring in biological environments and in the assessing of the correlation between structural characteristics and biological photodamage.  相似文献   

10.
Abstract— ESR studies have been made of the kinetics of semiquinone radical formation and disappearance resulting from the reversible photosensitization of reduction or oxidation, by chlorophyll, pheophytin or hematoporphyrin, of several quinone-hydroquinone pairs in various solvents. The rate of radical decay was found to be second order with respect to the radical concentration in all systems. Radical formation rates were determined by the initial production rate minus the decay rate. The kinetic constants for single electron transfer between triplet porphyrins and quinones or hydroquinones were determined usingβ-carotene as a quencher in aqueous pyridine, and by measuring the initial rate of radical formation at various concentrations of quinones and hydroquinones in methanol and ethanol. These constants were found to be approximately the same in a given solvent for benzoquinone and hydroquinone with all porphyrins, though the rates differed in different solvents: pyridine-water ~ 106I./mole sec, and methanol and ethanol ~ 5X 104l./mole sec. Trimethylquinone and its hydroquinone also give similar rate constants for radical formation in pyridine-water, ~ 106 l./mole sec. The second order radical decay constants for both benzoquinone and hydroquinone in pyridine-water were the same, ~ 105 I./mole sec, with either chlorophyll, pheophytin or hematoporphyrin as sensitizer. The same activation energy, 6900 cal/mole, was found for chlorophyll-benzoquinone and hydroquinone in aqueous pyridine; 5500 cal/mole was obtained for these systems in ethanol. In methanol and ethanol solutions of chlorophyll, the same radical decay rate constants, ~106 I./mole sec, were observed for both benzoquinone and hydroquinone. Also, the same decay constants, ~ 106 I./mole sec, were found for trimethylquinone and its hydroquinine in pyridine-water. These latter two compounds gave extremely small steady-state ESR signals in ethanol compared with aqueous pyridine. We have also observed that the steady-state signal obtained with chlorophyll-menadione in ethanol-water was much enhanced by the presence of NADH. In contrast, NAD+ was found to decrease radical production, by increasing the decay rate, in the chlorophyll-hydroquinone system in aqueous pyridine. These results are discussed in terms of possible mechanisms for radical formation and disappearance. The most likely possibility is considered to be a one-electron oxidation or reduction of the porphyrin triplet, followed by radical disproportionation and redox reactions between the disproportionation products.  相似文献   

11.
‘Supramolecular photochemistry’ (SP) deals with a study of the properties of molecules in their excited states where the medium plays a significant role. While ‘molecular photochemistry’ (MP) deals with studies in isotropic solution, the SP deals with reactant molecules that interact weakly with their surroundings. The surroundings in general are highly organized assemblies such as crystals, liquid crystals, micelles, and host–guest structures. The behavior of exited molecules in SP unlike in isotropic solution is controlled not only by their inherent electronic and steric properties but also by the immediate surroundings. The weak interactions that control the chemistry include van der Walls, hydrophobic, CH⋯π, π⋯π and several types of hydrogen bonds. In this review the uniqueness of SP compared to MP is highlighted with examples chosen from reactions in crystals, micelles and host–guest assemblies. In spite of distinctly different structures (crystals, micelles, etc.) the influence of the medium could be understood on the basis of a model developed by G.M.J. Schmidt for photoreactions in crystals. The principles of reaction cavity model are briefly outlined in this review. There are a few important features that are specific to SP. For example, highly reactive molecules and intermediates could be stabilized in a confined environment; they enable phosphorescence to be observed at room temperature and favor chiral induction in photochemical reactions. Using such examples the uniqueness of SP is highlighted. The future of SP depends on developing efficient and unique catalytic photoreactions using easily available reaction ‘containers’. In addition, their value in artificial photosynthesis should be established for SP to occupy a center stage in the future.  相似文献   

12.
The photophysics and photochemistry of nalidixic acid (NA) were studied as function of pH and solvent properties. The ground state of NA exhibits different protonated forms in the range of pH 1.8-10.0. Fluorescence studies showed that the same species exist at the lowest singlet excited state. Absorption experiments were carried out with NA and with the methylated analog of nalidixic acid (MNE) in different organic solvents and water pH 3, where the main species corresponds to that protonated at the carboxylic group. These studies and the DFT calculation of torsional potential energy profiles suggest that the most stable conformation of the NA in nonprotic solvents corresponds to a closed structure caused by the existence of intramolecular hydrogen bond. Absorption and fluorescence spectra were studied in sulfuric acid solution. The pK value (Ho -1.0) found in these conditions was attributed to the protonation of the 4' keto oxygen atom of the heterocyclic ring. Theoretical calculations (DFT/B3LYP/6-311G*) of the energies of the different monoprotonated forms of the NA and Fukui indexes (f(x)-) showed that the species with the proton attached to 4' keto oxygen atom is the most stable of all the cationic forms. MNE and enoxacin also showed the protonation of the 4' keto oxygen atom with similar pK values. The photodecomposition of NA is dependent on the medium properties. Faster decomposition rates were obtained in strong acid solution. In nonprotic solvents, a very slow decomposition rate was observed.  相似文献   

13.
A review is presented of the current activity in vibrational spectroscopy of adsorbates on metal surfaces. A brief introduction of the representative spectroscopies is given to demonstrate the rich information contained in vibrational spectra, which are characterized by their intensity, peak position and width. Analysis of vibrational spectra enables us to gain the deep insight into not only the local character of adsorption site or geometry, but also the dynamical interaction between the adsorbates or between the adsorbate and the substrate. Some recent instructive experimental results, mostly of a CO molecule adsorbed on various metal surfaces, are accompanied by the corresponding theoretical recipe for vibrational excitation mechanisms. Wide spread experimental results of the C-O stretching frequency of CO adsorbed on metal surfaces are discussed in terms of the chemical effect involving the static and dynamic charge transfers between the chemisorbed CO and metal, and also of the electrostatic dipole-dipole interaction between the molecules. The central subject of this review is directed to the linshapes characterized by the vibrational relaxation processes of adsorbates. A simple and transparent model is introduced to show that the characteristic decay time of the correlation function for the vibrational coordinates is the key quantity to determine the spectral lineshapes. Recent experimental results focused on a search for an intrinsic broadening mechanism are reviewed in the light of the so-called T1 (energy) and T2 (phase) relaxation processesof the vibrational excited states of adsorbates. Those are the vibrational energy dissipation into the elementary excitation, such as phonons or electron-hole pairs in the metal substrate, and pure dephasing due to the energy exchange with the sorroundings. The change of width and frequency by varying the experimental variables, such as temperature or isotope effect, provides indispensable knowledge for the dynamical interaction between adsorbate and substrate. Besides spectroscopic studies of adsorbate vibrations, infrared stimulated desorption is chosen as a case study of surface chemical reactions activated by laser radiation. The dynamical processes of photodesorption is discussed in conjunction with infrared absorption, which is followed by its energy dissipation into substrate phonons or molecule-surface bond leading to desorption.  相似文献   

14.
15.
1-Thiouredopyrene-3,6,8-trisulfonate (TUPS) has recently been used as a photoinduced covalent redox label capable of reducing various cofactors of proteins. A new reaction of this dye, whereby its excited triplet state oxidizes suitable electron donors, is now reported. The characteristic difference spectrum of the reduced radical of TUPS is determined. We also observe the self-exchange electron transfer between two TUPS molecules in their triplet excited states and determine the reaction scheme and the rate constants of the various pathways in the process of triplet depletion. The ability of photoexcited TUPS to withdraw an electron from reduced cytochrome-c is also observed. It is thus demonstrated that TUPS is an appropriate photoinduced covalent redox label for initiating both the oxidative and reductive phases of electron transfer processes in biological macromolecules.  相似文献   

16.
Chemical trapping studies combined with optical and electron paramagnetic resonance measurements were employed to examine the mechanisms of the aqueous photochemistry of methyl-benzoquinone (mBQ) at both low and high quinone concentrations. At low [mBQ], dimethylsulfoxide (DMSO) reacted with a photogenerated intermediate to form a methyl radical, but methane did not, thereby unequivocally excluding the hydroxyl radical. DMSO at concentrations between 50 mM and 2 M completely suppressed the formation of the hydroxylated quinone, while only slowing the formation of the hydroquinone, suggesting reaction with either the triplet state or an intermediate arising from the triplet. Addition of Cl-, a putative physical quencher of the triplet, inhibited the DMSO reaction both noncompetitively and competitively in a fashion similar to that observed previously with nitrite, formate, and salicylic acid, thus providing further evidence for a reactive intermediate distinct from the triplet. This intermediate is attributed to a water-quinone exciplex. The relative yield of the methyl radical from the DMSO reaction decreased with increasing [mBQ], suggesting that at high concentrations, a bimolecular reaction of the triplet with the ground-state quinone outcompetes the formation of the quinone-water exciplex.  相似文献   

17.
Citral (I) is cyclized by UV irradiation1 to 2-isopropenyl-5-methylcyclopentane-carboxaldehyde (II), containing the carbon skeleton of the monoterpenes of ants and catmint. 1,6,6-Trimethylbicyclo[2,1,1]hexane-2-carboxaldehyde (XII, R = H), produced in lesser amount at the same time, was synthesized from camphor. The two photocitrals may, perhaps, come from a common intermediate containing the cyclopentane ring.  相似文献   

18.
Circularly polarized synchrotron radiation of BESSY has been used to study the angular dependence of the spin polarization of photoelectrons emitted from Xe(√3x√3)R 30° Pd(111). The spin-polarization component along the light helicity varies from +1 for normal emission to ?0.5 for emission angles larger than 45°. The data can be fitted by use of the theory for photoionization of free xenon atoms and yield the dynamical fit parametersA, α, β, ζ for the adsorbate. Good agreement is obtained with the gas phase data.  相似文献   

19.
The possibility to modulate molecules reversibly by light has been fascinating chemists early on. One of the most powerful photochromic classes of compounds are azobenzenes, which have been incorporated in multiple molecular systems to alter their functionality. Recently, the incorporation of azobenzenes into macrocyclic scaffolds, azobenzenophanes, revealed a novel aspect of this interesting photoswitch. Especially, the build-in of more than one azobenzene moiety into the structure creates photochromic compounds with multiple accessible states. The cyclic arrangement also leads to a change in the photochemical properties, which offer new opportunities for functional molecular devices. In this article the synthesis as well as the photochemistry including applications of macrocyclic azobenzenes, containing more than one azobenzene unit, oligoazobenzenophanes, are reviewed.  相似文献   

20.
The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号