首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of [Pt(PCy(3))(2)] (Cy = cyclohexyl) with BI(3) afforded trans-[(Cy(3)P)(2)Pt(I)(BI(2))] by the oxidative addition of a B-I bond. The title compound represents the first diiodoboryl complex and was fully characterized by NMR spectroscopy and X-ray diffraction analysis. The latter revealed a very short Pt-B distance, thus indicating a pronounced pi contribution to this bond. By the addition of another 1 equiv of BI(3) to trans-[(Cy(3)P)(2)Pt(I)(BI(2))], a new Pt species [(Cy(3)P)(I(2)B)Pt(mu-I)](2) was formed with concomitant buildup of the phosphine borane adduct [Cy(3)P-BI(3)]. The former is obviously obtained by abstraction of PCy(3) from trans-[(Cy(3)P)(2)Pt(I)(BI(2))] and the subsequent dimerization of two remaining fragments. Interestingly, the dimerization is reversible, and the dinuclear compound can be converted to trans-[(Cy(3)P)(2)Pt(I)(BI(2))] upon the addition of PCy(3).  相似文献   

2.
The dinuclear gold complexes [{Au(PPh 3)} 2(mu- dmid)] ( 1) ( dmid = 1,3-dithiole-2-one-4,5-dithiolate) and [{Au(PPh 3)} 2(mu- dddt)] ( 2) ( dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) were synthesized and characterized by X-ray crystallography. Both complexes exhibit intramolecular aurophilic interactions with Au...Au distances of 3.1984(10) A for 1 and 3.1295(11) A for 2. A self-assembly reaction between 4,5-bis(2-hydroxyethylthio)-1,3-dithiole-2-thione ( (HOCH 2 CH 2 ) 2 dmit) and [AuCl(tht)] affords the complex [AuCl{ (HOCH 2 CH 2 ) 2 dmit}] 2 ( 4), which possesses an antiparallel dimeric arrangement resulting from a short aurophilic contact of 3.078(6) A. This motif is extended into two dimensions due to intra- and intermolecular hydrogen bonds via the hydroxyethyl groups, giving rise to a supramolecular network. Three compounds were investigated for their rich photophysical properties at 298 and 77 K in 2-MeTHF and in the solid state; [Au 2(mu- dmid)(PPh 3) 2] ( 1), [Au 2(mu- dddt)(PPh 3) 2] ( 2), and [AuCl{( HOCH 2 CH 2 ) 2 dmit}] ( 4). 1 exhibits relatively long-lived LMCT (ligand-to-metal charge transfer) emissions at 298 K in solution (370 nm; tau e approximately 17 ns, where M is a single gold not interacting with the other gold atom; i.e., the fluxional C-SAuPPh 3 units are away from each other) and in the solid state (410 nm; tau e approximately 70 mus). At 77 K, a new emission band is observed at 685 nm (tau e = 132 mus) and assigned to a LMCT emission where M is representative for two gold atoms interacting together consistent with the presence of Au...Au contacts as found in the crystal structure. In solution at 77 K, the LMCT emission is also red-shifted to 550 nm (tau e approximately 139 mus). It is believed to be associated to a given rotamer. 2 also exhibits LMCT emissions at 380 nm at 298 K in solution and at 470 nm in the solid state. 4 exhibits X/MLCT emission (halide/metal to ligand charge transfer) where M is a dimer in the solid state with obvious Au...Au interactions, resulting in red-shifted emission band, and is a monomer in solution in the 10 (-5) M concentration (i.e., no Au...Au interactions) resulting in blue-shifted luminescence. Both fluorescence and phosphorescence are observed for 4.  相似文献   

3.
Interaction of [Ru(NO)Cl3(PPh3)2] with K[N(R2PS)2] in refluxing N,N-dimethylformamide afforded trans-[Ru(NO)Cl{N(R2PS)2}2] (R = Ph (1), Pri (2)). Reaction of [Ru(NO)Cl3(PPh3)2] with K[N(Ph2PSe)2] led to formation of a mixture of trans-[Ru(NO)Cl{N(Ph2PSe)2}2] (3) and trans-[Ru(NO)Cl{N(Ph2PSe)2}{Ph2P(Se)NPPh2}] (4). Reaction of Ru(NO)Cl3 · xH2O with K[N(Ph2PO)2] afforded cis-[Ru(NO)(Cl){N(Ph2PO)2}2] (5). Treatment of [Rh(NO)Cl2(PPh3)2] with K[N(R2PQ)2] gave Rh(NO){N(R2PQ)2}2] (R = Ph, Q = S (6) or Se (7); R = Pri, Q = S (8) or Se (9)). Protonation of 8 with HBF4 led to formation of trans-[Rh(NO)Cl{HN(Pri2PS)2}2][BF4]2 (10). X-ray diffraction studies revealed that the nitrosyl ligands in 2 and 4 are linear, whereas that in 9 is bent with the Rh–N–O bond angle of 125.7(3)°.  相似文献   

4.
A number of new nitrosoarene complexes of rhodium(I) and iridium(I) have been prepared, and characterized by elemental analysis, IR spectroscopy and 1H NMR spectroscopy. Some reactions of the complexes have been studied.  相似文献   

5.
Hao  Zhi-Qiang  Zong  Si-Qi  Yan  Xin-Long  Ma  Zhi-Hong  Li  Su-Zhen  Han  Zhan-Gang  Lin  Jin 《Transition Metal Chemistry》2020,45(2):83-90
Transition Metal Chemistry - The reactions of pyridine alcohols PyCH2C(R1R2)OH [R1?=?H, R2?=?4-BrC6H4 (1); R1?=?H, R2?=?4-CF3C6H4 (2);...  相似文献   

6.
Compound [Fe2(μ-CO)2(CO)25-C9H7)2] (1) reacts with aryllithium reagents, ArLi (Ar = C6H5, p-CH3C6H4, p-CF3C6H4) followed by alkylation with Et3OBF4 to give the diindenyl-coordinated diiron bridging alkoxycarbene complexes [Fe2{μ-C(OC2H5)Ar}(μ-CO)(CO)25-C9H7)2] (2, Ar = C6H5; 3, Ar = p-CH3C6H4, 4, Ar = p-CF3C6H4). Complex 4 reacts with HBF4 · Et2O at low temperature to yield cationic bridging carbyne complex [Fe2(μ-CC6H4CF3-p)(μ-CO)(CO)25-C9H7)2]BF4 (5). Cationic 5 reacts with NaBH4 in THF at low temperature to afford diiron bridging arylcarbene complex [Fe2{μ-C(H)C6H4CF3-p}(μ-CO)(CO)25-C9H7)2] (6). The reaction of 5 with NaSC6H4CH3-p under the similar conditions gave the bridging arylthiocarbene complex [Fe2{μ-C(C6H4CF3-p)SC6H4CH3-p}(μ-CO)(CO)25-C9H7)2] (7). Complex 5 can also react with carbonylmetal anionic compounds Na[M(CO)5(CN)] (M = Cr, Mo, W) to produce the diiron bridging aryl(penta-carbonylcyanometal)carbene complexes [Fe2{μ-C(C6H4CF3-p)NCM(CO)5}(μ-CO)(CO)25-C9H7)2] (8, M = Cr; 9, M = Mo; 10, M = W). The structures of complexes 4, 6, 7, and 10 have been established by X-ray diffraction studies.  相似文献   

7.
Three cis-Ru(dppm)2XY complexes (XY?=?C2O4, 1; X?=?Cl, Y?=?N3, 2; X?=?Y?=?N3, 3) were prepared by reactions of cis-Ru(dppm)2Cl2 with (NH4)2C2O4, a mixture of NaN3 and NaPF6, and only NaN3, respectively, while 3 could also be obtained from further reaction of 2 with NaN3 undergoing a facile chloride abstraction. All complexes have been characterized by IR, NMR, UV–vis, and luminescence spectroscopic analyses as well as X-ray diffraction studies. Of these structures, 1 shows oxalate coordinates to Ru as a chelating ligand, while 2 displays Ru and azide linear, and 3 gives two azide groups cis to each other, which are different from two substituting ligands commonly lying in trans positions in Ru(P–P)2 complexes by using cis-Ru(dppm)2Cl2 as a precursor.  相似文献   

8.
A series of cis nitrosyl complexes containing polypyridyl ligands were prepared and characterized as cis-[RuL(bpy)2(NO)](PF6)3 (L = pyridine, 4-picoline, or 4-acetylpyridine), by elemental analysis, u.v.–vis. and i.r. spectroscopy, and by electrochemical techniques such as cyclic voltammetry, differential pulse voltammetry, spectroelectrochemistry, and coulometry. The complexes exhibit stretching frequencies (NO) at ca. 1950 cm–1 indicating that nitrosyl group has a sufficiently high degree of nitrosonium ion (NO+) character. In non-aqueous solution, the reduction of these complexes induce nitrosyl to nitro conversion. In aqueous solution the reduction product is cis-[RuL(bpy)2(NH3)]2+ formed by a six electron mechanism. The nitrosyl compounds are susceptible to nucleophilic attack by hydroxide ion. The equilibrium constants were determined.  相似文献   

9.
The reactions of [Cp*MCl2]2(Cp*=eta5-C5Me5, M = Rh, Ir) with thiacalix[4]arene (TC4A(OH)4) and tetramercaptothiacalix[4]arene (TC4A(SH)4) gave the mononuclear complexes [(Cp*M){eta3-TC4A(OH)2(O)2}] and the dinuclear complexes [(Cp*M)2{eta3eta3-TC4A(S)4}] respectively, while the analogous reactions with dimercaptothiacalix[4]arene (TC4A(OH)2(SH)2) produced the tetranuclear complexes [(Cp*M)2(Cp*MCl2)2-{eta3eta3eta1eta1-TC4A(O)2(S)2}].  相似文献   

10.
The mononuclear complexes [(η5-C5Me5)IrCl(L1)] (1), [(η5-C5Me5)RhCl(L1)] (2), [(η6-p-PriC6H4Me)RuCl(L1)] (3) and [(η6-C6Me6)RuCl(L1)] (4) have been synthesised from pyrazine-2-carboxylic acid (HL1) and the corresponding complexes [{(η5-C5Me5)IrCl2}2], [{(η5-C5Me5)RhCl2}2], [{(η6-p-PriC6H4Me)RuCl2}2], and [{(η6-C6Me6)RuCl2}2], respectively. The related dinuclear complexes [{(η5-C5Me5)IrCl}2(μ-L2)] (5), [{(η5-C5Me5)RhCl}2(μ-L2)] (6), [{(η6-p-PriC6H4Me)RuCl}2(μ-L2)] (7) and [{(η6-C6Me6)RuCl}2(μ-L2)] (8) have been obtained in a similar manner from pyrazine-2,5-dicarboxylic acid (H2L2). Compounds isomeric to the latter series, [{(η5-C5Me5)IrCl}2(μ-L3)] (9), [{(η5-C5Me5)RhCl}2(μ-L3)] (10), [{(p-PriC6H4Me)RuCl}2(μ-L3)] (11) and [{(η6-C6Me6)RuCl}2(μ-L3)] (12), have been prepared by using pyrazine-2,3-dicarboxylic acid (H2L3) instead of H2L2. The molecular structures of 2 and 3, determined by X-ray diffraction analysis, show the pyrazine-2-carboxylato moiety to act as an N,O-chelating ligand, while the structure analyses of 5-7, confirm that the pyrazine-2,5-dicarboxylato unit bridges two metal centres. The electrochemical behaviour of selected representatives has been studied by voltammetric techniques.  相似文献   

11.
Unsolvated, trinuclear, homometallic, rare-earth-metal multimethyl methylidene complexes [{(NCN)Ln(μ(2)-CH(3))}(3)(μ(3)-CH(3))(μ(3)-CH(2))] (NCN = L = [PhC{NC(6)H(4)(iPr-2,6)(2)}(2)](-); Ln = Sc (2a), Lu (2b)) have been synthesized by treatment of [(L)Ln{CH(2)C(6)H(4)N(CH(3))(2)-o}(2)] (Ln = Sc (1a), Lu (1b)) with two equivalents of AlMe(3) in toluene at ambient temperature in good yields. Treatment of 1 with three equivalents of AlMe(3) gives the heterometallic trinuclear complexes [(L)Ln(AlMe(4))(2)] (Ln = Sc (3a), Lu (3b)) in good yields. Interestingly, 2 can also be generated by recrystallization of 3 in THF/toluene, thereby indicating that the THF molecule can also induce C-H bond activation of 2. Reaction of 2 with one equivalent of ketones affords the trinuclear homometallic oxo-trimethyl complexes [{(L)Ln(μ(2) -CH(3))}(3) (μ(3)-CH(3))(μ(3)-O)] (Ln = Sc(4a), Lu(4b)) in high yields. Complex 4b reacts with one equivalent of cyclohexanone to give the methyl abstraction product [{(L)Lu(μ(2) -CH(3) )}(3) (μ(3) -OC(6)H(9))(μ(3)-O)] (5b), whereas reaction of 4b with acetophenone forms the insertion product [{(L)Lu(μ(2)-CH(3))}(3){μ(3)-OCPh(CH(3))(2)}(μ(3)-O)] (6b). Complex 4a is inert to ketone under the same conditions. All these new complexes have been characterized by elemental analysis, NMR spectroscopy, and confirmed by X-ray diffraction determination.  相似文献   

12.
The dimolybdenum complex [(η5-RC5H4)2Mo2(CO)6] (1, R = CH3CO; II, R = CH3O2C) reacts with an equimolar amount of white phosphorus P4 to yield the corresponding dimolybdenum complex containing the P2 ligand [(η5-RC5H4)2Mo2(CO)4(μ,η2-P2)] (1, R = CH3CO; 2, R = CH3O2C) in moderate yield. The two new compounds have been characterized by elemental analyses, 1H?NMR, 13C?NMR, 31 P?NMR and IR spectroscopies and their crystal structures have been determined by X-ray diffraction methods.  相似文献   

13.
Half-sandwich nitrosyl complexes Cp*M(NO)I2 (M = Mo, or W) react with dithiocarbamates (NaS2CNMe2 and NaS2CNEt2) in THF to form of complexes: Cp*Mo(NO)I (S2CNMe2) (1), Cp*Mo(NO)I(S2CNEt2) (2), Cp*W(NO)I(S2CNMe2) (3) and Cp*W(NO)I(S2CNEt2) (4) in high yields. Treatments of Cp*M(NO)I2 (M = Mo, W) or [CpMo(NO)I2]2 with phosphinodithioate (NaS2PMe2) and phosphorodithioate [(NH4)S2P(OMe)2] result in complexes: Cp*Mo(NO)I(S2PMe2) (5a), CpMo(NO)I (S2PMe2) (5b), Cp*Mo(NO)(S2PMe2)2 (6a), CpMo (NO) (S2PMe2)2 (6b) and Cp*Mo(NO)I[S2P(OMe)2] (7), Cp*W(NO)I(S2PMe2) (8), Cp*W(NO) I[S2P(OMe)]2 (9). Treatment of (5a) and (5b) with an excess of NaS2PMe2 gives (6a) and (6b). The complexes have been characterized by their elemental analyses, i.r., 1H, 13C-n.m.r. and by EI-MS spectrometry.  相似文献   

14.
Two dinuclear molecule-bridged Cu(I) complexes, (μ-bpym)[Cu(PPh3)Cl]2 (1), [(μ-bpym)(CuL)2](ClO4)2·(CH3CN)2(H2O) (2) (bpym = 2,2′-bipyrimidine, L = (R)-(+)-2,2′-bis(diphenylphospho)-1,1′-dinaphthalene) have been synthesized and characterized. The molecular structures of the two new dinuclear compounds exhibit bridging of two copper(I) centers by the symmetrically bis-chelating bpym ligand. Intriguingly, compound 1 features a remarkable “intramolecular organic sandwich” configuration where the central 2,2′-bipyrimidine bridging ligand interacts in π/π/π fashion with two phenyl rings from the coligands above and below the central plane, while chiral compound 2 exhibits second-order nonlinear optical effect and temperature-dependent luminescence. Upon decreasing the temperature from 298 to 10 K, compound 2 shows a red light emission.  相似文献   

15.
The electronic structures of three dinuclear iron complexes were determined with the DFT method. The complexes contain a {Fe(NO)2}9 unit and thiolate, nitrosyl, carbonyl and amine ligands at the second iron atom. The two iron atoms are bridged by thiolate ligands. In the lowest energy states of these complexes, the iron atoms possess spin S = 1, 3/2 or 5/2, depending on the coordinated ligands and their mutual arrangement. Nitrosyl is coordinated as NO antiferromagnetically coupled to iron, and the two iron units are antiferromagnetically coupled to each other.  相似文献   

16.
Two symmetrical macrocyclic dinuclear complexes, [Cu2L1(ClO4)2(H2O)2][Cu2L1(H2O)2] (ClO4)2 (1) and [Cu2L2(ClO4)2] (2), (where H2L1 and H2L2 are the [2?+?2] condensation products of 1,3-diaminopropane with 2,6-diformyl-4-methylphenol and 2,6-diformyl-4-flurophenol, respectively), have been synthesized and characterized. The electronic and magnetic properties of the complexes were studied by cyclic voltammetry and magnetic susceptibility. There are strong antiferromagnetic couplings between the two copper(II) centers in both complexes. The strongly electron-withdrawing fluorine groups in H2L2 weaken the antiferromagnetic exchange, but make the metal centers more easily reduced than its analog H2L1. The interactions of the complexes with calf thymus DNA were studied by UV?CVis and CD spectroscopic techniques.  相似文献   

17.
Novel neutral mixed-ligand Ir(N=C=N)(N=C)X complexes (N=C=N = 1,3-bis(3-methylpyrazolyl)benzene (bpzb), 1,5-dimethyl-2,4-bis(3-methylpyrazolyl)benzene (dmbpzb), and 1,5-difluoro-2,4-bis(3-methylpyrazolyl)benzene (dfbpzb); N=C = 2-phenyl pyridine (ppy); and X = Cl or CN) have been synthesized and characterized. An X-ray single-crystal structure of the complex Ir(dmbpzb)(ppy)Cl shows that the nitrogen atom in the ppy ligand occupied the trans position to the carbon atom in the tridentate N=C=N ligand of dmbpzb with the Ir-C bond length of 1.94(1) A, whereas the coordinating carbon atom occupied the trans position of chlorine. Electrochemical data show that the complexes exhibit an oxidation Ir(III/IV) process in the potential range of +0.5 approximately 0.9 V and two irreversible reductions at approximately -2.6 and -3.0 V against Fc (0)/Fc (+), respectively. All of the Ir(III) complexes do not emit phosphorescence at room temperature, although strong phosphorescence is exhibited at 77 K with the 0-0 transition centered at around 450 nm and lifetimes of 3-14 mus. DFT calculations indicate that the HOMOs are mainly localized on iridium 5dpi and chlorine ppi*, whereas the LUMOs are mainly from the ppy ligand pi* orbitals. The phosphorescence originates from a (3)LC state mixed with the (3)MLCT and (3)XLCT ones. Temperature-dependent lifetime measurements of Ir(dfbpzb)(ppy)Cl reveal the existence of a thermal deactivation process with a low activation energy (1720 cm (-1)) and very high frequency factor (2.3 x 10 (13) s (-1)). An unrestricted density functional theory indicates that the dd state, in which both the Ir-N (pyrazolyl) bond lengths increase considerably, exists almost at the same energy as that for the phosphorescent state. A thorough analysis based on the potential energy surfaces for the T 1 and S 0 states allows us to determine the reaction pathway responsible for this thermal deactivation. The calculated activation energies of 1600 approximately 1800 cm (-1) are in excellent agreement with the observed values.  相似文献   

18.
The reaction of Ir4(CO)12 with Ph3GeH at 97 degrees C has yielded the new tetrairidium cluster complexes Ir4(CO)7(GePh3)(mu-GePh2)2[mu3-eta3-GePh(C6H4)](mu-H)2 (10) and Ir4(CO)8(GePh3)2(mu-GePh2)4 (11). The structure of 10 consists of a tetrahedral Ir4 cluster with seven terminal CO groups, two bridging GePh2) ligands, an ortho-metallated bridging mu3-eta3-GePh(C6H4) group, a terminal GePh3 ligand, and two bridging hydrido ligands. Compound 11 consists of a planar butterfly arrangement of four iridium atoms with four bridging GePh2 and two terminal GePh3 ligands. The same reaction at 125 degrees C yielded the two new triiridium clusters Ir3(CO)5(GePh3)(mu-GePh2)3(mu3-GePh)(mu-H) (12) and Ir3(CO)6(GePh3)3(mu-GePh2)3 (13). Compound 12 contains a triangular Ir3 cluster with three bridging GePh2), one triply bridging GePh, and one terminal GePh3 ligand. The compound also contains a hydrido ligand that bridges one of the Ir-Ge bonds. Compound 13 contains a triangular Ir3 cluster with three bridging GePh2 and three terminal GePh3 ligands. At 151 degrees C, an additional complex, Ir4H4(CO)4(mu-GePh2)4(mu4-GePh)2 (14), was isolated. Compound 14 consists of an Ir4 square with four bridging GePh2, two quadruply bridging GePh groups, and four terminal hydrido ligands. Compound 12 reacts with CO at 125 degrees C to give the compound Ir3(CO)6(mu-GePh2)3(mu3-GePh) (15). Compound 15 is formed via the loss of the hydrido ligand and the terminal GePh3 ligand and the addition of one carbonyl ligand to 12. All compounds were fully characterized by IR, NMR, single-crystal X-ray diffraction analysis, and elemental analysis.  相似文献   

19.
Two new linear trinuclear complexes, [Co(NiL1)2(SCN)2] (1) and [Co(NiL2)2(H2O)2](ClO4)2?·?2C2H5OH (2), have been prepared by using Co(ClO4)2?·?6H2O and two macrocyclic complex ligands NiL1 and NiL2. L1 and L2 are the doubly deprotonated forms of dimethyl 5,6,7,8,15,16-hexahydro-6,7-dioxodibenzo[1,4,8,11]tetraazabicyclo[12.4.015,16]13,18-dicarboxylate and dimethyl 5,6,7,8,15,16-hexahydro-15-methyl-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate, respectively. X-ray single crystal analyses reveal the coordination geometries around Ni(II) in both 1 and 2 are identical and slightly distorted square planar with N4 donors; all Ni–N bonds in the two complexes are very short. The Co(II) ions are at the centers of the trinuclear complexes and have distorted octahedral coordination geometries of O4N2 donors in 1 and an O6 in 2. π?···?π interactions involving aromatic and non-aromatic π-systems join the trinuclear entities to form 2-D layers in the crystals of 1 and 2.  相似文献   

20.
Binuclear complex (Cp∗IrCl)2(dhbq) (dhbq = 2,5-dihydroxy-1,4-benzoquinonato) (1) was obtained by the reaction of (Cp∗IrCl2)2 with bridging ligand 2,5-dihydroxy-1,4-benzoquinone(H2dhbq) in the presence of the base n-BuNH2. After treatments of 1 with AgX (X = ) and then with N-linkers (pyrazine, 4,4′-bipyridine), the corresponding tetranuclear metallarectangular complexes [(Cp∗Ir)4(dhbq)2(pyrazine)2] (NO3)4·CH2Cl2·5H2O (2) and [(Cp∗Ir)4(dhbq)2(4,4′-bipyridine)2](SO3CF3)4(3) were obtained in good yields. Both the products were characterized by IR, 1H NMR and single crystal X-ray analyses and revealed that these tetranuclear complexes were constructed from half-sandwich metal corners with both dhbq and N-linkers to form rectangular cavities with the dimensions 8.0 × 6.9 Å (Ir-Ir separations) for 2, 8.0 × 11.2 Å (Ir-Ir separations) for 3, respectively. In additionally, in the solid structure of 2 the counteranions are located out of the cavities with the observed water molecules by hydrogen bonding of the type N-O?H-O-H?O-N. One-dimensional channels are observed in 3 along the b axis with intramolecular stacking, the similar arrangement is not found in the solid of 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号