首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to clarify the mechanism of transformation from alpha-form to beta-form via beta'-form of glyceryl monostearate (GM) and to determine the optimum conditions of heat-treatment for physically stabilizing GM in a pharmaceutical formulation. Thermal analysis repeated twice using a differential scanning calorimeter (DSC) were performed on mixtures of two crystal forms. In the first run (enthalpy of melting: DeltaH1), two endothermic peaks of alpha-form and beta-form were observed. However, in the second run (enthalpy of melting: DeltaH2), only the endothermic peak of the alpha-form was observed. From a strong correlation observed between the beta-form content in the mixture of alpha-form and beta-form and the enthalpy change, (DeltaH1-DeltaH2)/DeltaH2, beta-form content was expressed as a function of the enthalpy change. Using this relation, the stable beta-form content during the heat-treatment could be determined, and the maximum beta-form content was obtained when the heat-treatment was carried out at 50 degrees C. An inflection point existed in the time course of transformation of alpha-form to beta-form. It was assumed that almost all of alpha-form transformed to beta'-form at this point, and that subsequently only transformation from beta'-form to beta-form occurred. Based on this aspect, the transformation rate equations were derived as consecutive reaction. Experimental data coincided well with the theoretical curve. In conclusion, GM was transformed in the consecutive reaction, and 50 degrees C was the optimum heat-treatment temperature for transforming GM from the alpha-form to the stable beta-form.  相似文献   

2.
A new polymorph of CeNiSb3 has been grown from a Sn flux and characterized by single-crystal X-ray diffraction. beta-CeNiSb3 crystallizes in the orthorhombic space group Pbcm (No. 57) with Z = 8. The unit cell parameters are a = 12.9170(2) A, b = 6.1210(5) A, c = 12.0930(6) A, and V = 956.13(9) A3. Its layered structure contains structural motifs similar to that of the first form of CeNiSb3 and consists of Ce atoms inserted between anionic layers of nearly square infinity2[Sb] nets and distorted infinity2[NiSb2] octahedra. We report the synthesis, magnetization, electrical resistivity, and specific heat of the new form of CeNiSb3 and compare the structures and physical properties of both polymorphs.  相似文献   

3.
Effect of hydrostatic pressure on the two (I – monoclinic and II – orthorhombic) polymorphs of paracetamol was studied by X-ray diffraction in the diamond anvil cell at pressures up to 4.5 GPa (for the monoclinic form) and up to 5.5 GPa (for the orthorhombic form). The two groups of phenomena were studied: (i) the anisotropic structural distortion of the same polymorph, (ii) transitions between the polymorphs induced by pressure. The anisotropy of structural distortion of polymorphs I and II was well reproducible from sample to sample, also from powder samples to single crystals. The bulk compressibility of the two forms was shown to be practically the same. However, a noticeable qualitative difference in the anisotropy of structural distortion was observed: with increasing pressure the structure of polymorph II contracted in all the directions showing isotropic compression in the planes of hydrogen-bonded molecular layers, whereas the layers in the structure of the polymorph I expanded in some directions. Maximum compression in both polymorphs I and II was observed in the directions normal to the molecular layers. The transitions between the polymorphs induced by pressure were poorly reproducible and depended strongly on the sample and on the procedure of increasing/decreasing pressure. No phase transitions were induced in the single crystals of the monoclinic polymorph at pressures at least up to 4GPa, although a partial transformation of polymorph I into polymorph II was observed at increased pressure in powder samples. Polymorph II transformed partly into the polymorph I during grinding. The transformation could be hindered if grinding was carried out in CCl4. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
With 12 crystal forms, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecabonitrile (a.k.a. ROY) holds the current record for the largest number of fully characterized organic crystal polymorphs. Four of these polymorph structures have been reported since 2019, raising the question of how many more ROY polymorphs await future discovery. Employing crystal structure prediction and accurate energy rankings derived from conformational energy-corrected density functional theory, this study presents the first crystal energy landscape for ROY that agrees well with experiment. The lattice energies suggest that the seven most stable ROY polymorphs (and nine of the twelve lowest-energy forms) on the Z′ = 1 landscape have already been discovered experimentally. Discovering any new polymorphs at ambient pressure will likely require specialized crystallization techniques capable of trapping metastable forms. At pressures above 10 GPa, however, a new crystal form is predicted to become enthalpically more stable than all known polymorphs, suggesting that further high-pressure experiments on ROY may be warranted. This work highlights the value of high-accuracy crystal structure prediction for solid-form screening and demonstrates how pragmatic conformational energy corrections can overcome the limitations of conventional density functionals for conformational polymorphs.

Crystal structure prediction suggests that the low-energy polymorphs of ROY have already been found, but a new high-pressure form is predicted.  相似文献   

5.
The polymorphic forms and amorphous form of TA-270 (4-hydroxy-1-methyl-3-octyloxy-7-sinapinoylamino-2(1H)-quinolinone), a newly developed antiallergenic compound, were characterized by powder X-ray diffractometry, thermal analysis, infrared spectroscopy and solid state 13C-NMR. The intrinsic dissolution rates of polymorphic forms were measured using the rotating disk method at 37 degrees C. The dissolution rates correlated well with the thermodynamic stability of each polymorphic form. These dissolution properties were clearly reflected in the oral bioavailability of TA-270 in rats. The transition behavior for each polymorph and for the amorphous form was studied under the high temperature and humidity conditions. The beta- and delta-forms were transformed into the alpha-form by heating. The amorphous form was also easily crystallized into alpha-form by heating, however it was relatively stable under humidified conditions. The internal molecular packing of each polymorph was estimated from IR and solid state NMR spectral analysis.  相似文献   

6.
The trinuclear complex, Au(I)3(MeN=COMe)3, which displays a number of remarkable properties including solvoluminescence, has been found to crystallize as three polymorphs. The new triclinic and monoclinic polymorphs crystallized as colorless blocks, whereas the original hexagonal polymorph formed colorless needles. These polymorphs differ in the manner in which the nearly planar molecules pack and in the nature of the aurophilic interactions between them. Each of the three polymorphs of Au(I)3(MeN=COMe)3 shows a distinctive emission spectrum, but only the original hexagonal polymorph shows the low-energy emission that is responsible for its solvoluminescence. Colorless Au(I)3(n-PentN=COMe)3 crystallized from diethyl ether as needles of an orthorhombic polymorph and blocks of a triclinic polymorph. These polymorphs differ in the orientation of the n-Pent substituents, in the orientation of the trimers with respect to one another, and in the nature of the aurophilic interactions between the molecules. Only the triclinic polymorph of Au(I)3(n-PentN=COMe)3 shows luminescence at room temperature, but it is not solvoluminescent. Colorless Au(I)3(i-PrN=COMe)3 has also been prepared and crystallographically characterized. The isopropyl groups protrude out of the plane of the nine-membered ring and prevent self-association. The closest Au...Au contact between molecules is 6.417 A. Crystalline Au(I)3(i-PrN=COMe)3 is not luminescent at room temperature.  相似文献   

7.
Two polymorphs of safinamide {systematic name: (2S)‐2‐[4‐(3‐fluorobenzyloxy)benzylamino]propionamide}, C17H19FN2O2, a potent selective and reversible monoamine oxidase B (MAO‐B) inhibitor, are described. Both forms are orthorhombic and regarded as conformational polymorphs due to the differences in the orientation of the 3‐fluorobenzyloxy and propanamide groups. Both structures pack with layers in the ac plane. In polymorph (I), the layers have discrete wide and narrow regions which are complementary when located next to adjacent layers. In polymorph (II), the layer has long flanges protruding from each side, which interdigitate when packed with the adjacent layers. N—H...O hydrogen bonds are present in both structures, whereas N—H...F hydrogen bonding is seen in polymorph (I), while N—H...N hydrogen bonding is seen in polymorph (II).  相似文献   

8.
Copper(II) hypophosphite has been shown to exist as several polymorphs. The crystal structures of monoclinic α‐, ortho­rhombic β‐ and ortho­rhombic γ‐Cu(H2PO2)2 have been determined at different temperatures. The geometry of the hypophosphite anion in all three polymorphs is very close to the idealized one, with point symmetry mm2. Despite having different space groups, the structures of the α‐ and β‐polymorphs are very similar. The polymeric layers formed by the Cu atoms and the hypophosphite ions, which are identical in the α‐ and β‐polymorphs, stack in the third dimension in different ways. Each hypophosphite anion is coordinated to three Cu atoms. On cooling, a minimum amount of contraction was observed in the direction normal to the layers. The structure of the polymeric layers in the γ‐­polymorph is quite different. There are two symmetry‐independent hypophosphite anions; the first is coordinated to two Cu atoms, while the second is coordinated to four Cu atoms. In all three polymorphs, the Cu atoms are coordinated by six O atoms of six hypophosphite anions, forming tetragonal bipyramids; in the α‐ and β‐polymorphs, there are four short and two long Cu—O distances, while in the γ‐polymorph, there are four long and two short Cu—O distances.  相似文献   

9.
The crystal structures of the monoclinic and triclinic polymorphs of zoledronic acid, C5H10N2O7P2, have been established from laboratory powder X‐ray diffraction data. The molecules in both polymorphs are described as zwitterions, namely 1‐(2‐hydroxy‐2‐phosphonato‐2‐phosphonoethyl)‐1H‐imidazol‐3‐ium. Strong intermolecular hydrogen bonds (with donor–acceptor distances of 2.60 Å or less) link the molecules into layers, parallel to the (100) plane in the monoclinic polymorph and to the (10) plane in the triclinic polymorph. The phosphonic acid groups form the inner side of each layer, while the imidazolium groups lie to the outside of the layer, protruding in opposite directions. In both polymorphs, layers related by translation along [100] interact through weak hydrogen bonds (with donor–acceptor distances greater than 2.70 Å), forming three‐dimensional layered structures. In the monoclinic polymorph, there are hydrogen‐bonded centrosymmetric dimers linked by four strong O—H...O hydrogen bonds, which are not present in the triclinic polymorph.  相似文献   

10.
High-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) was successfully applied to seven stereoisomeric diterpenoid alkaloids at position 1 or 12. Comparison of the breakdown curves, observed by changing the potential difference between the first electrode and the second electrode of the APCI ion source, revealed stereochemical dependence of different fragmentations. The APCI spectra of alkaloids were predominantly the [M+H]+ ion and the major fragment ion, corresponding to the [M+H-H2O]+ ion or the [M+H-CH3COOH]+ ion, and comparison of the APCI spectra showed that the abundance of fragment ions was significantly higher for C-1 beta-form alkaloids than for C-1 alpha-form alkaloids, and for C-12 beta-form alkaloids than for C-12 alpha-form alkaloids. The characteristic fragment ions were formed due to the loss of an acetic acid or a water molecule at position 12. The fragmentation mechanisms depending on the stereochemistry of the precursor ion could be discerned by recording the spectra in a deuterated solvent system of 0.05 M ammonium acetate in D2O-acetonitrile-tetrahydrofuran. Loss of CH3COOD or D2O from the precursor ion gave the fragment ion. This result indicated that the proton of protonation was included in the leaving acetic acid and water molecule, respectively. The peak intensity ratio for R=[M+H]+/[M+ H-H2O]+ + [M + H-CH3COOH] + manifested the stereochemical differentiation of alkaloids at position 1 or 12.  相似文献   

11.
The synthesis, XRD single-crystal structure, powder XRD, and solid-state fluorescence of two new DPA-DPS-EWG derivatives (DPA=diphenylamino, DPS=2,5-diphenyl-stilbene, EWG=electron-withdrawing group, that is, carbaldehyde or dicyanovinylene, DCV) are described. Absorption and fluorescence maxima in solvents of various polarity show bathochromic shifts with respect to the parent DPA-stilbene-EWGs. The electronic coupling in dimers and potential twist elasticity of monomers were studied by density functional theory. Both polymorphs of the CHO derivative emit green fluorescence (527 and 550 nm) of moderate intensity (10 % and 5 %) in polycrystalline powder form. Moderate (5 %) red (672 nm) monomer-like emission was also observed for the first polymorph of the DCV derivative, whereas more intense (32 %) infrared (733 nm) emission of the second polymorph was ascribed to the excimer fluorescence.  相似文献   

12.
Human plasma-derived antithrombin was characterized in both the native and de-N-glycosylated forms (without separation of isoforms) by means of electrospray ionization ion trap mass spectrometry (ESI-ITMS). In order to determine the limits of the instrument set-up, the molecular mass precision and accuracy of the ESI-ITMS analysis was evaluated with the standard protein enolase and some instrumental data acquisition parameters were optimized. Mass precision was determined as a function of the number of averaged mass spectra (= scans) and data acquisition time. For this study, 20 and 50 scans were averaged and the data acquisition time was chosen to be between 0.5 and 5 min. It turned out that data acquisition times longer than approximately 2 min show no significant differences of the standard deviation of the determined molecular mass. Furthermore, the ion trap scan rate was varied at constant acquisition time of 2 min and the number of averaged scans was set to 20. At the scan rate of 13,000 u s(-1) a mass precision of +/-1.8 Da and a mass accuracy of +0.026% were determined. On reducing the scan rate to 5500 u s(-1), better agreement with the theoretical molecular mass was obtained, showing a mass accuracy of +0.012% but with a decrease in the mass precision to +/-3.0 Da. Using the optimized scan rate of 13,000 u s(-1) and a data acquisition time of 2 min, the exact molecular mass was determined of the three forms of antithrombin, namely the alpha-form, the beta-form and the natural mixture (present in human plasma) containing both forms. The protonated molecular masses were found to be 57,854 and 55,664 Da for the affinity chromatography-isolated alpha-and beta-form, respectively. The mass difference of 2190 Da is attributed to the known difference in carbohydrate content at one specific site. The protonated molecular mass of the dominating species of the natural mixture in human plasma was shown to be 57,850 Da, corresponding to the alpha-form, the major component in native plasma. In this mixture the beta-form was also detected, exhibiting a protonated molecular mass of 55,655 Da, but showing a much lower abundance, as expected. To obtain a complete release of the N-glycan residues by means of PNGase F, a denaturation, reduction and alkylation step of the glycoproteins was performed before the enzymatic reaction. After enzymatic removal of all N-glycans, the protonated molecular masses obtained were 49,399, 49,380 and 49,391 Da for the alpha-form, the beta-form and the unseparated natural mixture, respectively. These values are in good agreement (+0.026% for the alpha-form, -0.012% for the beta-form and +0.010% for the unseparated mixture) with the calculated molecular mass based on the SwissProt data. The determined molecular masses after reduction/alkylation and de-N-glycosylation of the alpha-and beta-forms are almost equal, indicating that no major differences exist between the three preparations on the amino acid level.  相似文献   

13.
4,4-Diphenyl-2,5-cyclohexadienone (1) crystallized as four conformational polymorphs and a record number of 19 crystallographically independent molecules have been characterized by low-temperature X-ray diffraction: form A (P2(1), Z'=1), form B (P1, Z'=4), form C (P1, Z'=12), and form D (Pbca, Z'=2). We have now confirmed by variable-temperature powder X-ray diffraction that form A is the thermodynamic polymorph and B is the kinetic form of the enantiotropic system A-D. Differences in the packing of the molecules in these polymorphs result from different acidic C-H donors approaching the C=O acceptor in C-H...O chains and in synthons I-III, depending on the molecular conformation. The strength of the C-HO interaction in a particular structure correlates with the number of symmetry-independent conformations (Z') in that polymorph, that is, a short C-HO interaction leads to a high Z' value. Molecular conformation (Econf) and lattice energy (Ulatt) contributions compensate each other in crystal structures A, B, and D resulting in very similar total energies: Etotal of the stable form A=1.22 kcal mol(-1), the metastable form B=1.49 kcal mol(-1), and form D=1.98 kcal mol(-1). Disappeared polymorph C is postulated as a high-Z', high-energy precursor of kinetic form B. Thermodynamic form A matches with the third lowest energy frame based on the value of Ulatt determined in the crystal structure prediction (Cerius2, COMPASS) by full-body minimization. Re-ranking the calculated frames on consideration of both Econf (Spartan 04) and Ulatt energies gives a perfect match of frame #1 with stable structure A. Diphenylquinone 1 is an experimental benchmark used to validate accurate crystal structure energies of the kinetic and thermodynamic polymorphs separated by <0.3 kcal mol(-1) (approximately 1.3 kJ mol(-1)).  相似文献   

14.
Phosphorus nitride imide, PN(NH), is of great scientific importance because it is isosteric with silica (SiO2). Accordingly, a varied structural diversity could be expected. However, only one polymorph of PN(NH) has been reported thus far. Herein, we report on the synthesis and structural investigation of the first high‐pressure polymorph of phosphorus nitride imide, β‐PN(NH); the compound has been synthesized using the multianvil technique. By adding catalytic amounts of NH4Cl as a mineralizer, it became possible to grow single crystals of β‐PN(NH), which allowed the first complete structural elucidation of a highly condensed phosphorus nitride from single‐crystal X‐ray diffraction data. The structure was confirmed by FTIR and 31P and 1H solid‐state NMR spectroscopy. We are confident that high‐pressure/high‐temperature reactions could lead to new polymorphs of PN(NH) containing five‐fold‐ or even six‐fold‐coordinated phosphorus atoms and thus rivalling or even surpassing the structural variety of SiO2.  相似文献   

15.
Colloidal suspensions of triglycerides are under investigation as potential drug carrier systems. The properties of the matrix lipids are altered in the nanoparticles compared to those of the bulk material. For instance, the metastable alpha-modification of the triglycerides usually transforms into the stable beta-polymorph quite rapidly in the colloidal particles. Recently, it was observed that the alpha-modification can be preserved for a considerable period of time in tristearin nanoparticles when the particles are stabilized with a blend of saturated long-chain phospholipids and the bile salt sodium glycocholate [Bunjes, H.; Koch, M. H. J. J. Controlled Release 2005, 107, 229-243]. As triglyceride nanoparticles in the alpha-modification may offer some advantages over those in the beta-form with regard to drug delivery applications, the structure of the corresponding dispersions was investigated in more detail with differential scanning calorimetry, X-ray diffraction, and electron microscopy. The electron microscopic investigations confirmed a platelet-like, layered structure for particles in the beta-modification and revealed a spheroidal shape with concentric layers for larger particles in the alpha-form. For the first time, not only was information on the internal structure of solid triglyceride nanoparticles obtained from freeze-fracture electron micrographs but also details were observed by cryoelectron microscopy.  相似文献   

16.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

17.
The analysis of the thermograms of thalidomide obtained for the two reported polymorphs and β by differential scanning calorimetry (DSC) shows some inconsistencies that are discussed in the present work. The conception of a new polymorph form, named β*, allowed us to explain the observed thermal behavior more satisfactorily. This new polymorph shows enantiotropy with both and β polymorphs, reflected in the unique endotherm obtained in the DSC-thermograms, when a heating rate of 10 °C/min is applied. Several additional experiments, such as re-melting of both polymorph forms, showed that there is indeed a new polymorph with an endotherm located between the endotherms of and β. IR, Raman, and powder X-ray permit us to characterize the isolated compound, resulting from the re-melting of both polymorph forms. Mechanical calculations were performed to elucidate the conformations of each polymorph, and ab initio quantum chemical calculations were performed to determine the energy of the more stable conformers and the spatial cell energy for both polymorphs and β. These results suggested a possible conformation for the newly discovered polymorph β*.  相似文献   

18.
We have investigated the polymorphic phase transformations above ambient temperature for 3‐chloro‐trans‐cinnamic acid (3‐ClCA, C9H7ClO2) and a solid solution of 3‐ClCA and 3‐bromo‐trans‐cinnamic acid (3‐BrCA, C9H7BrO2). At 413 K, the γ polymorph of 3‐ClCA transforms to the β polymorph. Interestingly, the structure of the β polymorph of 3‐ClCA obtained in this transformation is different from the structure of the β polymorph of 3‐BrCA obtained in the corresponding polymorphic transformation from the γ polymorph of 3‐BrCA, even though the γ polymorphs of 3‐ClCA and 3‐BrCA are isostructural. We also report a high‐temperature phase transformation from a γ‐type structure to a β‐type structure for a solid solution of 3‐ClCA and 3‐BrCA (with a molar ratio close to 1:1). The γ polymorph of the solid solution is isostructural with the γ polymorphs of pure 3‐ClCA and pure 3‐BrCA, while the β‐type structure produced in the phase transformation is structurally similar to the β polymorph of pure 3‐BrCA.  相似文献   

19.
Crystal structures and magnetic properties were determined for two novel polymorphs of the complex [H2DABCO][Ni(mnt)2] [(H2DABCO)2+ = diprotonated 1,4-diazabicyclo[2.2.2]octane; mnt2- = maleonitriledithiolate]. For each polymorph, anions form a layered structure in which two kinds of dimers were observed. The adjacent anionic sheets are held together by cations via H-bonding interactions between protons of cations and CN groups of anions. Two polymorphs possess spin bistability; namely, upon cooling, a magnetic transition happens at around 120 K with about 1 K hysteresis on heating for the alpha phase and at 112 K with about 10 K hysteresis for the beta phase. Above the transition, the magnetic behaviors of two polymorphs can be approximately interpreted by a singlet-triplet model of an antiferromagnetically coupled S = 1/2 dimer, which is supported by the crystal structures and spin dimer analyses based on extended Hückel molecular orbital calculations.  相似文献   

20.
The molecular structures of two salicylaldehyde thiosemicarbazone derivatives, namely salicylaldehyde 4‐phenylthiosemicarbazone, C14H13N3OS, (I), and 4‐methoxysalicylaldehyde 4‐phenylthiosemicarbazone, C15H15N3O2S, (II), both of potential pharmacological interest, are found in the keto (thione) tautomeric form. The first compound represents a second triclinic polymorph of composition β‐C14H13N3OS. Although both polymorphs crystallize in the same space group (P), the α‐polymorph [Seena, Kurup & Suresh (2008). J. Chem. Crystallogr. 38 , 93–96] differs from the β form in its unit‐cell volume at 293 K. The molecules in the crystal structures of (I) and (II) are linked into centrosymmetric R22(8) dimers by hydrogen bonds of the N—H...S=C type. These dimers are connected through π–π stacking and T‐shaped C—H...π interactions into three‐dimensional networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号